• 제목/요약/키워드: average velocity

검색결과 1,321건 처리시간 0.026초

풍자원 평가를 위한 건축물 주변의 유동특성 (Characteristic of Wind Flow around Building Structures for Wind Resource Assessment)

  • 조강표;정승환;신승화
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.50-58
    • /
    • 2011
  • To utilize wind resources effectively around buildings in urban area, the magnitudes of wind velocity and turbulence intensity are important, which means the need of the information about the relationship between the magnitude of wind velocity and that of fluctuating wind velocity. In the paper, wind-tunnel experiments were performed to provide the information about Characteristic of Wind flow around buildings with the spanwise distance and the side ratio of buildings as variables. For a single building with the side ratios of one and two, the average velocity ratio was 1.4 and the velocity standard deviation ratio ranged from 1.4 to 2.6 at the height of 0.02m at the corner of the windward side, in which flow separation occurred. For twin buildings with the side ratios of one and two, the velocity ratio ranged from 2 to 2.5 as the spanwise distance varied at the height of 0.02m, and the velocity standard deviation ratio varied near 1.25. For twin buildings with the side ratios of one and two, the maximum velocity ratio was 1.75 at the height of 0.6m, and the maximum velocity standard deviation ratio was 2.1. It was also found from the results of CFD analysis and wind-tunnel experiments that for twin buildings with the side ratios of one and two, the difference between the velocity ratio of CFD analysis and that of wind-tunnel experiments at streamwise distances was near 0.75.

저 분해능 엔코더를 사용한 정밀 속도 제어 (Precise Velocity Control at Low Speed with a Low Resolution Encoder)

  • 서기원;강현재;이충우;정정주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.140-142
    • /
    • 2007
  • This paper presents an effective method of precise velocity control at low speed with a low resolution encoder. Multirate observer to estimate the velocity at every DSP control period is used except a constant velocity mode. The observer corrects the estimation error when detects pulse signal. Unlike the conventional methods, the multirate estimator is stable at a low speed. However, the multirate estimator shows ripples at a constant velocity. Thus, in this paper we use a velocity prediction method which uses the present velocity from the previous average velocity to reject the ripple. In a summary, at a constant speed mode, the predicted velocity is used. Otherwise, the estimated velocity by the multirate obvserver is used. The effectiveness of the multirate observer and ripple rejection at low speed is verified through various simulations.

  • PDF

도파관 배열이 설치된 비상발전기 연도의 유속 예측 및 EMP 차폐평가 (Electromagnetic Pulse (EMP) Shielding Effectiveness of Waveguide-Below-Cutoff (WBC) Arrays Installed in Generator Exhaust Chimney and its Effects on Gas Velocity)

  • 방승기;김재훈;육종관;김유나;김상인;김석봉
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2016
  • Characteristics of exhaust from chimney of electricity generator are analyzed based on CFD when Waveguide-Below-Cutoff (WBC) array is installed in order to achieve the certain level of electromagnetic pulse (EMP) shielding. The main purpose is prediction of average and maximum velocity of exhaust. The results reveal that: 1) When the specification of waveguide is given as 80-diameter, 400-length, and the gap of 20 mm, the shielding effectiveness (SE) is 140dB. The average and maximum velocity of exhaust in the chimney with WBC Array can be represented as exponential functions. 2) As the number of WBC increases, the velocity in the chimney dwindles. 3) Under the situation that WBC with 80 mm diameter is located at intervals of 20 mm, the average velocity can be approximated by $25.5344{\times}e^{(-0.0098{\times}N_{WBC})}$ with input velocity of 15 m/s. In addition, the determination coefficient is 0.915, which is sufficiently high.

2011 대구 세계육상선수권대회 남자 장대높이뛰기경기 기술의 운동학적 분석 (Kinematic Analyses of Men's Pole Vault in IAAF World Championships, Daegu 2011)

  • 최규정;이경옥;김남희;강지은;김혜림
    • 한국운동역학회지
    • /
    • 제21권5호
    • /
    • pp.551-560
    • /
    • 2011
  • The purpose of this study was to perform the kinematic analyses of the men's pole vault skills in IAAF World Championships Daegu 2011. Subjects were the 1st through 8th place finishers in the pole vault. The kinematic analyses were divided into four phases: two dimensional run up analysis, and three dimensional analyses for the remaining plant, swing up, and extension phases. Run-up variables consisted of run up distance, number of steps, average step length, the ratio of step length to his height, average velocity at the final 6~11 m, approach position. Three variables were analyzed during plant: pole angle, center of gravity (COG) velocity, and takeoff angle of COG. Swing up phase variables included: pole flexion angle, COG velocity (horizontal, vertical, resultant), COG trajectory and bar approach angle of COG. Compared to the 2009 World Championships in Berlin, the average vault height, run up velocity and approach position increased. However, horizontal velocity during the last two steps of the final approach decreased dramatically compared to speeds from 1990. These results reflect the change in both technique and improved physical fitness in pole vaulters. During extension, the peak height of COG averaged 0.3m higher then COG height when the pole was released. These specific results can help coaches and athletes modify training and improve performance.

Geometry optimization of a double-layered inertial reactive armor configured with rotating discs

  • Bekzat Ajan;Dichuan Zhang;Christos Spitas;Elias Abou Fakhr;Dongming Wei
    • Advances in Computational Design
    • /
    • 제8권4호
    • /
    • pp.309-325
    • /
    • 2023
  • An innovative inertial reactive armor is being developed through a multi-discipline project. Unlike the well-known explosive or non-explosive reactive armour that uses high-energy explosives or bulging effect, the proposed inertial reactive armour uses active disc elements that is set to rotate rapidly upon impact to effectively deflect and disrupt shaped charges and kinetic energy penetrators. The effectiveness of the proposed armour highly depends on the tangential velocity of the impact point on the rotating disc. However,for a single layer armour with an array of high-speed rotating discs, the tangential velocity is relatively low near the center of the disc and is not available between the gap of the discs. Therefore, it is necessary to configure the armor with double layers to increase the tangential velocity at the point of impact. This paper explores a multi-objective geometry design optimization for the double-layered armor using Nelder-Mead optimization algorithm and integration tools of the python programming language. The optimization objectives include maximizing both average tangential velocity and high tangential velocity areas and minimizing low tangential velocity area. The design parameters include the relative position (translation and rotation) of the disc element between two armor layers. The optimized design results in a significant increase of the average tangential velocity (38%), increase of the high tangential velocity area (71.3%), and decrease of the low tangential velocity area (86.2%) as comparing to the single layer armor.

PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (III) - 위상평균유동장 - (A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (III) - Phase Average -)

  • 이만복;김경천
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1527-1534
    • /
    • 2001
  • Phase averaged velocity fields in the near wake region behind a square cylinder have been (successfully) obtained using randomly sampled PIV data sets. The Reynolds number based on the flow velocity and the vertex height was 3,900. To identify the phase information, we examined the magnitude of circulation and the center of peak vorticity. The center of vorticity was estimated from lowpass filtered vorticity contours (LES decomposition) adopting a sub-pixel searching algirithm. Due to the sinusoidal nature of firculation which is closely related to the instantaneous vorticity, the location of peak voticity fits well with a sine curve of the circulation magnitude. Conditionally-averaged velocity fields represent the barman vortex shedding phenomenon very well within 5 degrees phase uncertainty. The oscillating nature of the separated shear layer and the separation bubble at the top surface are clearly observed. With the hot-wire measurements of Strouhal frequency, we found thats the convection velocity changes its magnitude very rapidly from 25 to 75 percent of the free stream velocity along the streamwise direction when the flow passes by the recirculation region.

A Study on Flow Characteristics of Polluted Air in Rectangular Tunnel Models Using a PIV System

  • Koh, Young-Ha;Park, Sang-Kyoo;Yang, Hei-Cheon;Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.825-832
    • /
    • 2010
  • The objective of this study is to investigate flow behaviors of polluted air in order to prevent the impact of disaster in a tunnel. This paper presents the experimental results qualitatively in terms of flow characteristics in two kinds of rectangular tunnel models in which each distance from the centerline above the inlet vent to the exhaust vent is 0 and 60 mm, respectively. The olive oil is used as the tracer particles. The flow is tested at the flow rate of $14.16{\times}10^{-4}\;m^3/s$ and the inlet vent velocity of 1.1 m/s with the kinematic viscosity of air. The aspect ratio of the model test section is 10. The average velocity vectors, streamlines, and vorticity distributions are measured and analyzed by the Flow Manager in a particle image velocimetry(PIV) system. The PIV technology gives three different velocity distributions according to observational points of view for understanding the polluted air flow characteristics. The maximum value of mean velocity generally occurs in the inlet and outlet vent regions in the tunnel models.

식생수로의 유속분포에 관한 실험적 연구 (An Experimental Study on Velocity Profile in a Vegetated Channel)

  • 권도현;박성식;백경원;송재우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.957-960
    • /
    • 2004
  • From a water-environmental point of view, with a change of understanding and concern about vegetation, it changes that vegetation acts as stability of channel and bed, providing habitats and feed for fauna, and means improving those with appreciation of the beautiful but resistant factor to the flow So, it becomes important concern and study subjects that turbulent structure by vegetation, shear stress and transport as well as roughness and average velocity by vegetation. But from a hydraulic point of view, vegetation causes resistance to the flow and can increase the risk of flooding, Therefore, this thesis concern the flow characteristics in vegetated open channels. According to the experimental results, $z_0$ was on an average $0.4h_p$ in a vegetated open channel. So, the elevation corresponding to zero velocity in a vegetated channel was the middle of roughness element. The limit for logarithmically distributed profile over the roughness element was from $z_0$ to $0.80h_{over}$ for a vegetated channel. Among the existing theory, the method of Kouwen et al.(1969), Haber(1982), and El-Hakim and Salama(1992) except Stephan(2001) gave a very good value compared to the measured velocity profile.

  • PDF

정지 및 회전하는 원주에 의한 난류후류의 응집구조 (An Investigation of the Coherent Structures in Turbulent Wake Past a Stationary and Rotating Cylinder)

  • 부정숙;이종춘
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1310-1321
    • /
    • 1994
  • Turbulent coherent structures in the intermediate wake of a stationary and rotating cylinder, spin rate S=0.7, situated in a uniform were experimentally investigated using a conditionalphase average technique. Measurements were carried out at a section of 8.5 diameters downstream form the center of cylinder and a Reynolds number of $Re=6.5{\times}10^{3}.$/TEX> The phase averaged velocity and velocity vector fields, contours of vorticity, turbulent intermittency function and velocity fluctuation energy are presented and discussed in relation to the large scale coherent structures by Karman vortices that shed periodically from the cylinder. Coherent wake structures of the rotating cylinder is almost identical with stationary cylinder, but the lateral displacement and shrinkage of turbulent wake region is occured by rotation. Rotation of the cylinder result in that the deflection of wake center to deceleration region(Y/D${\simeq}-0.3)$ and the decrease of mean velocity defect(10%), vorticity strength of large scale structures(19%), total velocity fluctuation energy(12%).

The effect of Volume Expansion on the Propagation of Wrinkled Laminar Premixed Flame

  • Chung, E.H.;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.139-154
    • /
    • 1998
  • Under certain circumstance, premixed turbulent flame can be treated as wrinkled thin laminar flame and its motion in a hydrodynamic flow field has been investigated by employing G-equation. Past studies on G-equation successfully described certain aspects of laminar flame propagation such as effects of stretch on flame speed. In those studies, flames were regarded as a passive interface that does not influence the flow field. The experimental evidences, however, indicate that flow field can be significantly modified by the propagation of flames through the volume expansion of burned gas. In the present study, a new method to be used with G -equation is described to include the effect of volume expansion in the flame dynamics. The effect of volume expansion on the flow field is approximated by Biot-Savart law. The newly developed model is validated by comparison with existing analytical solutions of G -equation to predict flames propagating in hydrodynamic flow field without volume expansion. To further investigate the influence of volume expansion, present method was applied to initially wrinkled or planar flame propagating in an imposed velocity field and the average flame speed was evaluated from the ratio of flame surface area and projected area of unburned stream channel. It was observed that the initial wrinkling of flame cannot sustain itself without velocity disturbance and wrinkled structure decays into planar flame as the flame propagates. The rate of decay of the structure increased with volume expansion. The asymptotic change in the average burning speed occurs only with disturbed velocity field. Because volume expansion acts directly on the velocity field, the average burning speed is affected at all time when its effect is included. With relatively small temperature ratio of 3, the average flame speed increased 10%. The combined effect of volume expansion and flame stretch is also considered and the result implied that the effect of stretch is independent of volume release.

  • PDF