• Title/Summary/Keyword: average fiber length

Search Result 124, Processing Time 0.029 seconds

A Study on the Preparation and Characterization of Carbon Fiber Composite Filter (탄소섬유 복합여과재의 제조 및 물성연구)

  • 이재춘;신경숙;이덕용;김병균;심선자;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.989-994
    • /
    • 1995
  • Rigid porous carbon fiber composites with the uniform pore size distribution were prepared by vacuum forming from water slurries containing carbonized PAN fibers, a phenolic resin and ceramic binders. The composites were designed to use for highly efficient carbon fiber filters for particulate filtration and gas adsorption. As the as-received carbon fibers of 1mm in length were milled to an approximate average length of 300${\mu}{\textrm}{m}$, modulus of rupture (MOR) of the composite filter was increased from 1MPa to the value larger than 5 MPa. Modulus of rupture (MOR) for the composite filter fabricated using the milled carbon fiber was increased from 5 MPa to 10 MPa as the carbonization temperature of the PAN fiber was raised from 90$0^{\circ}C$ to 140$0^{\circ}C$. The air permeability and an average pore size of the composite filter were increased from 40 to 270cc/min.$\textrm{cm}^2$ and from 35 to 80${\mu}{\textrm}{m}$, respectively, as the apparent porosity increased from 80 to 95%. It was shown that the MOR of the carbon fiber composite filter was dependent primarily on the average length of carbon fiber, carbonization temperature and the type of bonding materials.

  • PDF

Determination of Airborne Fiber Size and Concentration in RCF Manufacturing and Processing Factories (세라믹 섬유 제조 및 가공 공정에서 발생된 공기중 섬유의 농도 및 크기 분포)

  • 신용철
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.21-28
    • /
    • 2000
  • Various man-made mineral fibers(MMMF) including refractory ceramic fiber(RCF) have been used widely in industries as insulation materials. The effect of fibrous dust on human health depends on fiber size, concentration (exposure level), and durability in biological system. Therefore, these parameters should be determined to evaluate accurately the potential risk of fibers on human health. The purpose of this study was to characterize the size of airborne fiber and the workers' exposure to airborne fibers in refractory ceramic fiber manufacturing and processing factories. Airborne fibers were collected on 25-mm mixed cellulose ester membrane filters at personal breathing zones, and analyzed by A and B counting rules of the National Institute for Occupational Safety and Health(NIOSH) Method # 7400. The average ratios of the fiber density by B rule to the fiber density by A rule was 0.84. This result indicates that the proportion of respirable fibers (<3 ${\mu}{\textrm}{m}$ diameter) in air samples was high. The average diameter and length of airborne fibers were 1.05${\mu}{\textrm}{m}$ and 35${\mu}{\textrm}{m}$, respectively. The average fiber concentrations (GM) of all personal samples was 0.26f/cc, and the average concentration was highest at blanket cutting and packing processes. The fifty seven percent of personal air samples was exceeded the proposed American Conference of Governmental Industrial Hygienists(ACGIH) Threshold Limit Value(TLV), i.e. 0.2 f/cc. It was concluded that the RCF industrial workers had the higher potential health risk due to small fiber diameter, long fiber length, and high exposure level to the airborne fibers.

  • PDF

Classification of the Length of Ceramic Fibers by Settling Process (중력침강에 의한 세라믹 섬유의 길이분류)

  • 김제균;최광훈;오승진;정윤중;강대갑;이재춘
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.161-170
    • /
    • 1994
  • For the preparation of short ceramic fibers of which average length might be in accordance with the opening size of sieve, e.g., 150${\mu}{\textrm}{m}$ or 300${\mu}{\textrm}{m}$, bulk fibers were grounded on sieve screen by applying both compressing and shearing force, and passed through the sieve screen. The grounded fibers were subjected to gravitational settling processes. The classified fibers were observed by scanning electron microscopy and the length of each fiber was measured to correlate the average length with the opening size of the sieve used for grinding bulk fibers. Theoretical analysis show that a free settling technique is ineffective for the classification of fibers by length compared with that of particles. The average lengths of classified fibers estimated by scanning electron microscopy were in good agreement with those obtained by relative packing volume of the fibers. Accordingly, it is confirmed that average fiber lengths can be determined from bulk volume data without photographing, counting and averaging results for hundreds of fibers.

  • PDF

Characterization of Nalita Wood (Trema orientalis) as a Source of Fiber for Papermaking (Part I): Anatomical, morphological and chemical properties

  • M. Sarwar Jahan;Mun, Sung-Phil
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.72-79
    • /
    • 2003
  • Nalita wood (Trema orientalis), one of the fastest growing woods in the world, is characterized anatomical, morphological and chemical properties at annual growth ring level in order to investigate as papermaking raw material. The proportion of fibers and vessel was increased with an increase of growth ring (from pith to bark). The fiber length of Nalita was increased with increasing growth ring, and an average fiber length was about 817 um. The average basic density of Nalita was about 0.38 g/cc. The total lignin & holocellulose in Nalita were increased and ash & alcohol-benzene extract decreased from pith to bark. These values were about 23.5 - 24.4 %, 78.1 - 80.1 %, 1.04 - 0.92 % and 2.1 - 1.8 %, respectively. The xylan was the predominant sugar in the hemicellulose of Nalita.

Characterization and Evaluation of Worker s Exposure to Airborne Glass Fibers in Glass Wool Manufacturing Industry (유리섬유 단열재 제조업 근로자의 공기중 유리섬유 폭로 특성 및 평가 방법에 관한 연구)

  • 신용철;이광용;박천재;이나루;정동인;오세민
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.43-57
    • /
    • 1996
  • To characterize worker's exposure to glass fibers, to find the correlation between airborne total dust concentrations and fiber concentrations and to recommend an appropriate evaluation method for worker's exposure to fibrous dusts in glass wool industry, we carried out this study. Average respirable fiber levels at five factories were 0.013-0.056 f/cc, and fairly below the OSHA PEL, 1 f/cc. A factory showed the lowest airborne fiber level, 0.013 f/cc, which was different significantly from those of other factories of which average fiber concentration was 0.046 f/cc. The cutting and grinding operations of insulation products resulted in higher airborne fiber cocentrations than any other processes(p<0.05). To characterize airborne fiber dimension, fiber length and diamter were determined using phase contrast microscope. The geometric means of airborne fiber lengths were $42-105 \mu m$. One factory had airborne fibers whose length distribution(GM = $105 \mu m$) was different from those of other factories(GM = $42-50 \mu m$). The percentages of respirable fibers less thinner than 3 gm were 38.9-90.9% at four factories, and two factories of them had the higher percentages than others. The findings explain for variation of airborne fiber diameters between factories. On the other hand, between the processes were the difference of fiber-length distributions observed. The cutting and grinding operations showed shorter fiber-length distributions than the fiber forming one. However, fiber-diameter distributions or respirable fiber contents were similar in all processes. The airborne fiber concentrations and the dust concentrations had relatively weak correlation(r=0.25), thus number of fibers couldn't be expected reliably from dust amount. Fiber count is appropriate for assessing accurate exposures and health effects caused by fibrous dusts including glass fibers. Ministry of Labor have established occupational exposure limit to glass fibers as nuisiance dust, but should establish it on the basis of respirable fiber concentration to provide adequate protection for worker's health

  • PDF

Interfacial bond properties and comparison of various interfacial bond stress calculation methods of steel and steel fiber reinforced concrete

  • Wu, Kai;Zheng, Huiming;Lin, Junfu;Li, Hui;Zhao, Jixiang
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.515-531
    • /
    • 2020
  • Due to the construction difficulties of steel reinforced concrete (SRC), a new composite structure of steel and steel fiber reinforced concrete (SSFRC) is proposed for solving construction problems of SRC. This paper aims to investigate the bond properties and composition of interfacial bond stress between steel and steel fiber reinforced concrete. Considering the design parameters of section type, steel fiber ratio, interface embedded length and concrete cover thickness, a total of 36 specimens were fabricated. The bond properties of specimens were studied, and three different methods of calculating interfacial bond stress were analyzed. The results show: relative slip first occurs at the free end; Bearing capacity of specimens increases with the increase of interface embedded length. While the larger interface embedded length is, the smaller the average bond strength is. The average bond strength increases with the increase of concrete cover thickness and steel fiber ratio. And calculation method 3 proposed in this paper can not only reasonably explain the hardening stage after the loading end curve yielding, but also can be applied to steel reinforced high-strength concrete (SRHC) and steel reinforced recycled coarse aggregate concrete (SRRAC).

Impact of Booster Section Length on the Performance of Linear Cavity Brillouin-Erbium Fiber Laser

  • Al-Mashhadani, Thamer Fahad;Jamaludin, Md. Zaini;Al-Mansoori, Mohammed Hayder;Abdullah, Fairuz;Abbas, Abdulla Khudair
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.162-166
    • /
    • 2014
  • The impact of booster section length made from passive erbium-doped fiber (EDF) on the L-band multiwavelength Brillouin-Erbium fiber laser (MBEFL) is studied experimentally in this paper. The influence on the performance of MBEFL in term of number of generated Stokes lines, tuning range and lasing threshold were investigated. A comparison was made between MBEFL without a booster section and with booster sections of different lengths. Through comparative study and at fixed BP power and 100mW of 1480 pump power, longer passive EDF length of 5m exhibits the highest average number of Stokes lines of 23 with tuning range of 14nm. In contrast, shorter passive EDF length of 1m shows the highest tuning range of 17nm and an average number of 21 Stokes lines.

Effective Utilization of Hemp Fiber for Pulp and Papermaking (I) -Morphological Characteristics of Hemp Fiber- (펄프.제지용 원료로서의 삼 섬유 이용에 관한 연구(제 1보) -대마 구성 세포의 현미경적 관찰-)

  • Yoon, Seung-Lak;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.7-12
    • /
    • 2010
  • Morphological characteristics of hemp fiber were investigated using a light microscope in order to provide fundamental data for the use of hemp as a papermaking law material. Phloem of hemp is composed of cortical parenchyma cells and bast fiber with thick walls while xylem is composed of vessel, wood fiber and ray parenchyma cells. Also there are solitary pore and radial pore multiple which exist in diffuse porous pattern. Ray cells consist of uniseriate rays and thin walled ray parenchyma cells. Wood fibers are composed of three types: a large diameter fiber with longer length; a large diameter fiber with shorter length; a small diameter fiber with medium length. Vessel elements are composed of: a medium length one; a longer length one; the one whose both end walls have ligules or tails. Parenchyma cells in xylem and pit parenchyma cells have completely different size and shape. For bast fiber, the average length is about 4.4 mm and the width is about $30.5\;{\mu}m$; for vessel element, $600.0\;{\mu}m$ in length and $493.6\;{\mu}m$ in width; for wood fiber, $1000\;{\mu}m$ and $38.9\;{\mu}m$; for parenchyma cell, $50\;{\mu}m$ and $26.4\;{\mu}m$.

Characteristic Change of Fiber Depending on the Refining Conditions of Reconstituted Tobacco Process (판상엽 고해조건에 따른 섬유특성 변화 평가)

  • Han young-Rim;Sung Yong-Joo;Kim Sam-Kon;Kim Kun-Soo;Han In-Ho
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.195-200
    • /
    • 2005
  • The goal of refining is to treat fibers so they meet the requirements of the papermaking process. The refining process in papermaking has great influence on the quality of the final product by changing the fiber properties, such as fiber length, shape, fine contents and so on. In this study, the effect on the morphological change of fibers by the refining conditions were investigated using the fiber morphology analyzer. Fiber morphology analyzer used to determine which pulps are suitable for producing particular products. Furthermore it is widely used in paper mills to monitor paper quality. The morphological change of fibers according to refining conditions were evaluated out by measuring fiber, shive and fine. In the fiber morphology, the domestic reconstituted tobacco fiber has the bigger average fiber length value than that of the foreign reconstituted tobacco.

Residual Strength of Fiber Metal Laminates After Impact (충격손상을 받은 섬유 금속 적층판의 잔류 강도 연구)

  • Nam, Hyun-Wook;Lee, Young-Tae;Jung, Chang-Kyu;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.440-449
    • /
    • 2003
  • Residual strength of fiber metal laminates after impact was studied. 3/4 lay up FML was fabricated using 4 ply prepreg, 2 ply aluminum sheets, and 1 ply steel sheet. Quasi isotropic ([0/45/90/-45]s) and orthotropic ([0/90/0/90]s) FRP were also fabricated to compare with FML. Impact test were conducted by using instrumented drop weight impact machine (Dynatup, Model 8250). Penetration load and absorbed energy of FML were superior to those of FRPs. Tensile tests were conducted to evaluate the residual strength after impact. Strength degradation of FML was less than that of FRP. This means that the damage tolerance of FML is excellent than that of FRP. Residual strength of each specimen was predicted by using Whitney and Nuismer(WN) Model. Impact damage area is assumed as a circular notch in WN model. Damage width is defined as the average of back face and top face damage width of each specimen. Average stress and point stress criterions were used to calculate the characteristic length. It is supposing that a characteristic length is a constant. The distribution of characteristic length shows that the assumption is reasonable. Prediction was well matched with experiment under both stress criterions.