• 제목/요약/키워드: autophagy

검색결과 471건 처리시간 0.023초

Neuroprotective Effect of Chebulagic Acid via Autophagy Induction in SH-SY5Y Cells

  • Kim, Hee Ju;Kim, Joonki;Kang, Ki Sung;Lee, Keun Taik;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • 제22권4호
    • /
    • pp.275-281
    • /
    • 2014
  • Autophagy is a series of catabolic process mediating the bulk degradation of intracellular proteins and organelles through formation of a double-membrane vesicle, known as an autophagosome, and fusing with lysosome. Autophagy plays an important role of death-survival decisions in neuronal cells, which may influence to several neurodegenerative disorders including Parkinson's disease. Chebulagic acid, the major constituent of Terminalia chebula and Phyllanthus emblica, is a benzopyran tannin compound with various kinds of beneficial effects. This study was performed to investigate the autophagy enhancing effect of chebulagic acid on human neuroblastoma SH-SY5Y cell lines. We determined the effect of chebulagic acid on expression levels of autophagosome marker proteins such as, DOR/TP53INP2, Golgi-associated ATPase Enhancer of 16 kDa (GATE 16) and Light chain 3 II (LC3 II), as well as those of its upstream pathway proteins, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and Beclin-1. All of those proteins were modulated by chebulagic acid treatment in a way of enhancing the autophagy. Additionally in our study, chebulagic acid also showed a protective effect against 1-methyl-4-phenylpyridinium ($MPP^+$) - induced cytotoxicity which mimics the pathological symptom of Parkinson's disease. This effect seems partially mediated by enhanced autophagy which increased the degradation of aggregated or misfolded proteins from cells. This study suggests that chebulagic acid is an attractive candidate as an autophagy-enhancing agent and therefore, it may provide a promising strategy to prevent or cure the diseases caused by accumulation of abnormal proteins including Parkinson's disease.

Blocking Bcl-2 Leads to Autophagy Activation and Cell Death of the HEPG2 Liver Cancer Cell Line

  • Du, Peng;Cao, Hua;Wu, Hao-Rong;Zhu, Bao-Song;Wang, Hao-Wei;Gu, Chun-Wei;Xing, Chun-Gen;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5849-5854
    • /
    • 2013
  • Background: Apoptosis may be induced after Bcl-2 expression is inhibited in proliferative cancer cells. This study focused on the effect of autophagy activation by ABT737 on anti-tumor effects of epirubicin. Methods: Cytotoxic effects of ABT737 on the HepG2 liver cancer cell line were assessed by MTT assay and cell apoptosis through flow cytometry. Mitochondrial membrane potential was measured by fluorescence microscopy. Monodansylcadaverin (MDC) staining was used to detect activation of autophagy. Expression of p53, p62, LC3, and Beclin1, apoptotic or autophagy related proteins, was detected by Western blotting. Results: ABT737 and epirubicin induced growth inhibition in HepG2 cells in a dose- and time-dependent manner. Both ABT737 and epirubicin alone could induce cell apoptosis with a reduction in mitochondrial membrane potential as well as increased apoptotic protein expression. Further increase of apoptosis was detected when HepG2 cells were co-treated with ABT373 and epirubicin. Furthermore, our results demonstrated that ABT373 or epirubicin ccould activate cell autophagy with elevated autophagosome formation, increased expression of autophagy related proteins and LC3 fluorescent puncta. Conclusions: ABT737 influences cancer cells through both apoptotic and autophagic mechanisms, and ABT737 may enhance the effects of epirubicin on HepG2 cells by activating autophagy and inducing apoptosis.

The Role of HS-1200 Induced Autophagy in Oral Cancer Cells

  • Jang, Nam-Mi;Oh, Sang-Hun;Kim, In-Ryoung;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제38권3호
    • /
    • pp.93-100
    • /
    • 2013
  • Bile acids and synthetic bile acid derivatives induce apoptosis in various kinds of cancer cells and thus have anticancer properties. Recently, it has been suggested that autophagy may play an important role in cancer therapy. However, few data are available regarding the role of autophagy in oral cancers and there have been no reports of autophagic cell death in OSCCs (oral squamous cell carcinoma cells) induced by HS-1200, a synthetic bile acid derivative. We thus examine whether HS-1200 modulates autophagy in OSCCs. Our findings indicate that HS-1200 has anticancer effects in OSCCs, and we observed in these cells that autophagic vacuoles were visible by monodansylcadaverine (MDC)and acridine orange staining. When we analyzed HS-1200-treated OSCC cells for the presence of biochemical markers, we observed that this treatment directly affects the conversion of LC-3II, degradation of p62/SQSTM1 and full-length beclin-1, cleavage of ATG5-12 and the activation of caspase. An autophagy inhibitor suppressed HS-1200-induced cell death in OSCCs, confirming that autophagy acts as a pro-death signal in these cells. Furthermore, HS-1200 shows anticancer activity against OSCCs via both autophagy and apoptosis. Our current findings suggest that HS-1200 may potentially contribute to oral cancer treatment and thus provide useful information for the future development of a new therapeutic agent.

Transient Receptor Potential Cation Channel V1 (TRPV1) Is Degraded by Starvation- and Glucocorticoid-Mediated Autophagy

  • Ahn, Seyoung;Park, Jungyun;An, Inkyung;Jung, Sung Jun;Hwang, Jungwook
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.257-263
    • /
    • 2014
  • A mammalian cell renovates itself by autophagy, a process through which cellular components are recycled to produce energy and maintain homeostasis. Recently, the abundance of gap junction proteins was shown to be regulated by autophagy during starvation conditions, suggesting that transmembrane proteins are also regulated by autophagy. Transient receptor potential vanilloid type 1 (TRPV1), an ion channel localized to the plasma membrane and endoplasmic reticulum (ER), is a sensory transducer that is activated by a wide variety of exogenous and endogenous physical and chemical stimuli. Intriguingly, the abundance of cellular TRPV1 can change dynamically under pathological conditions. However, the mechanisms by which the protein levels of TRPV1 are regulated have not yet been explored. Therefore, we investigated the mechanisms of TRPV1 recycling using HeLa cells constitutively expressing TRPV1. Endogenous TRPV1 was degraded in starvation conditions; this degradation was blocked by chloroquine (CLQ), 3MA, or downregulation of Atg7. Interestingly, a glucocorticoid (cortisol) was capable of inducing autophagy in HeLa cells. Cortisol increased cellular conversion of LC3-I to LC-3II, leading autophagy and resulting in TRPV1 degradation, which was similarly inhibited by treatment with CLQ, 3MA, or downregulation of Atg7. Furthermore, cortisol treatment induced the colocalization of GFP-LC3 with endogenous TRPV1. Cumulatively, these observations provide evidence that degradation of TRPV1 is mediated by autophagy, and that this pathway can be enhanced by cortisol.

열다한소탕(熱多寒少湯) 가감방(加減方)의 자가탐식(自家貪食) 유도 활성과 관련 단백질 탐색 (Autophagy inducing Effect of modified Yeoldahanso-tang and its related Proteins in SH-SY5Y cells)

  • 김희주;배나영;장문희;양현옥;안택원
    • 사상체질의학회지
    • /
    • 제25권3호
    • /
    • pp.208-217
    • /
    • 2013
  • Objectives Modified Yeolda-Hanso tang (MYH) is a traditional herbal formula in Korea for various diseases. MYH is containing the 10 herbs : Pueraria lobata (Willd.) Ohwi, Angelica tenuissima Nakai, Scutellaria baicalensis Georgi, Platycodon grandiflorum (Jacq), Angelicae Dahurica, Cimicifuga heracleifolia Kom, Raphanus sativa L., Polygala tenuifolia (Willd), Acorus gramineus Soland and Dimocarpus longan Lour. The 10 herbs is constituted as a ratio of the 6:4:2:1:2:2:2:4:6:6. We investigated neuroprotective effects of MYH on human neuroblastoma SH-SY5Y cells and evaluated the ability of MYH to prevent and treat for neurodegenerative diseases such as Parkinson's disease via basal autophagy enhancement. Methods Pharmacological induction of Autophagy by MYH in SH-SY5Y cells: Induction of autophagy by MYH in human neuroblastoma SH-SY5Y cells was carreid out by immunoblot analysis with several autophagy markers. SH-SY5Y cells were treated with MYH at the concentration of 400 and $800{\mu}g/ml$ for 24 hr. Specifically, the autophagosome proteins LC3 II and Atg5 levels were increased and autophagy pathway related proteins such as beclin-1, PI3 Kinase class III protein, ULK1, mTOR and AMPK were activated. Conclusions MYH can enhance the induction of autophagy through key regulator AMPK, mTOR, and Beclin-1 and it should be considered as a possible candidate of neuroprotective agents for such as Parkinson's disease.

Ethanol Induces Autophagy Regulated by Mitochondrial ROS in Saccharomyces cerevisiae

  • Jing, Hongjuan;Liu, Huanhuan;Zhang, Lu;Gao, Jie;Song, Haoran;Tan, Xiaorong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권12호
    • /
    • pp.1982-1991
    • /
    • 2018
  • Ethanol accumulation inhibited the growth of Saccharomyces cerevisiae during wine fermentation. Autophagy and the release of reactive oxygen species (ROS) were also induced under ethanol stress. However, the relation between autophagy and ethanol stress was still unclear. In this study, expression of the autophagy genes ATG1 and ATG8 and the production of ROS under ethanol treatment in yeast were measured. The results showed that ethanol stress very significantly induced expression of the ATG1 and ATG8 genes and the production of hydrogen peroxide ($H_2O_2$) and superoxide anion (${O_2}^{{\cdot}_-}$). Moreover, the atg1 and atg8 mutants aggregated more $H_2O_2$ and ${O_2}^{{\cdot}_-}$ than the wild-type yeast. In addition, inhibitors of the ROS scavenging enzyme induced expression of the ATG1 and ATG8 genes by increasing the levels of $H_2O_2$ and ${O_2}^{{\cdot}_-}$. In contrast, glutathione (GSH) and N-acetylcystine (NAC) decreased ATG1 and ATG8 expression by reducing $H_2O_2$ and ${O_2}^{{\cdot}_-}$ production. Rapamycin and 3-methyladenine also caused an obvious change in autophagy levels and simultaneously altered the release of $H_2O_2$ and ${O_2}^{{\cdot}_-}$. Finally, inhibitors of the mitochondrial electron transport chain (mtETC) increased the production of $H_2O_2$ and ${O_2}^{{\cdot}_-}$ and also promoted expression levels of the ATG1 and ATG8 genes. In conclusion, ethanol stress induced autophagy which was regulated by $H_2O_2$ and ${O_2}^{{\cdot}_-}$ derived from mtETC, and in turn, the autophagy contributed to the elimination $H_2O_2$ and ${O_2}^{{\cdot}_-}$.

Sitagliptin attenuates endothelial dysfunction independent of its blood glucose controlling effect

  • Chang, Xin-Miao;Xiao, Fei;Pan, Qi;Wang, Xiao-Xia;Guo, Li-Xin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.425-437
    • /
    • 2021
  • Although the contributions of sitagliptin to endothelial dysfunction in diabetes mellitus were previously reported, the mechanisms still undefined. Autophagy plays an important role in the development of diabetes mellitus, but its role in diabetic macrovascular complications is unclear. This study aims to observe the effect of sitagliptin on macrovascular endothelium in diabetes and explore the role of autophagy in this process. Diabetic rats were induced through administration of high-fat diet and intraperitoneal injection of streptozotocin. Then diabetic rats were treated with or without sitagliptin for 12 weeks. Endothelial damage and autophagy were measured. Human umbilical vein endothelial cells were cultured either in normal glucose or in high glucose medium and intervened with different concentrations of sitagliptin. Rapamycin was used to induce autophagy. Cell viability, apoptosis and autophagy were detected. The expressions of proteins in c-Jun N-terminal kinase (JNK)-Bcl-2-Beclin-1 pathway were measured. Sitagliptin attenuated injuries of endothelium in vivo and in vitro. The expression of microtubuleassociated protein 1 light chain 3 II (LC3II) and beclin-1 were increased in aortas of diabetic rats and cells cultured with high-glucose, while sitagliptin inhibited the over-expression of LC3II and beclin-1. In vitro pre-treatment with sitagliptin decreased rapamycin-induced autophagy. However, after pretreatment with rapamycin, the protective effect of sitagliptin on endothelial cells was abolished. Further studies revealed sitagliptin increased the expression of Bcl-2, while inhibited the expression of JNK in vivo. Sitagliptin attenuates injuries of vascular endothelial cells caused by high glucose through inhibiting over-activated autophagy. JNK-Bcl-2-Beclin-1 pathway may be involved in this process.

Modulation of Autophagy is a Potential Strategy for Enhancing the Anti-Tumor Effect of Mebendazole in Glioblastoma Cells

  • Jo, Seong Bin;Sung, So Jung;Choi, Hong Seok;Park, Jae-Sung;Hong, Yong-Kil;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.616-624
    • /
    • 2022
  • Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has been suggested as a repositioning candidate for the treatment of brain tumors. However, the efficacy of MBZ needs further study to improve the beneficial effect on the survival of those patients. In this study, we explored a novel strategy to improve MBZ efficacy using a drug combination. When glioblastoma cells were treated with MBZ, cell proliferation was dose-dependently inhibited with an IC50 of less than 1 µM. MBZ treatment also inhibited glioblastoma cell migration with an IC50 of less than 3 µM in the Boyden chamber migration assay. MBZ induced G2-M cell cycle arrest in U87 and U373 cells within 24 h. Then, at 72 h of treatment, it mainly caused cell death in U87 cells with an increased sub-G1 fraction, whereas polyploidy was seen in U373 cells. However, MBZ treatment did not affect ERK1/2 activation stimulated by growth factors. The marked induction of autophagy by MBZ was observed, without any increased expression of autophagy-related genes ATG5/7 and Beclin 1. Co-treatment with MBZ and the autophagy inhibitor chloroquine (CQ) markedly enhanced the anti-proliferative effects of MBZ in the cells. Triple combination treatment with temozolomide (TMZ) (another autophagy inducer) further enhanced the anti-proliferative effect of MBZ and CQ. The combination of MBZ and CQ also showed an enhanced effect in TMZ-resistant glioblastoma cells. Therefore, we suggest that the modulation of protective autophagy could be an efficient strategy for enhancing the anti-tumor efficacy of MBZ in glioblastoma cells.

Autophagy May Mediate Cellular Senescence by Nicotine Stimulation in Gingival Fibroblasts

  • Jun, Nu-Ri;Jang, Jong-Hwa;Lee, Jae-Young;Lee, Sang-Im
    • 치위생과학회지
    • /
    • 제22권3호
    • /
    • pp.164-170
    • /
    • 2022
  • Background: When cells are damaged by nicotine, cellular senescence due to oxidative stress accelerates. In addition, stress-induced inflammatory response and cellular senescence cause the accumulation of damaged organelles in cells, and autophagy appears to remove them. Conversely, when autophagy is reduced, harmful cell components accumulate, and aging is accelerated. This study aimed to determine the association between nicotine-induced cellular senescence and autophagy expression patterns in human gingival fibroblasts. Methods: Cells were treated with various concentrations of nicotine (0, 0.1, 0.5, 1, 2, and 5 mM) and 10 nM rapamycin was added to 1 mM nicotine to investigate the relationship between autophagy and cellular senescence. Cell viability was confirmed using WST-8 and the degree of cellular senescence was measured by SA-β-gal staining. The expression of the inflammatory proteins (COX-2 and iNOS) and autophagy markers (LC3-II, p62, and Beclin-1) was analyzed by western blotting. Results: The cell viability tended to decrease in a concentration-dependent manner. COX-2 showed no concentration-dependent expression and iNOS increased in the 0.5 mM nicotine treated group. The degree of cellular senescence was the highest in the 1 mM nicotine treatment group. In the group treated with rapamycin and nicotine, the conversion ratio of LC3-II to LC3-I was the highest, that of p62 was the lowest, and the level of Beclin-1 proteins was significantly increased. Furthermore, the degree of cellular senescence was reduced in the group in which rapamycin was added to nicotine compared to that in the group treated with nicotine alone. Conclusion: This study provides evidence that autophagy activated in an aging environment reduces cellular senescence to a certain some extent.

Protein Kinase CK2 Is Upregulated by Calorie Restriction and Induces Autophagy

  • Park, Jeong-Woo;Jeong, Jihyeon;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.112-121
    • /
    • 2022
  • Calorie restriction (CR) and the activation of autophagy extend healthspan by delaying the onset of age-associated diseases in most living organisms. Because protein kinase CK2 (CK2) downregulation induces cellular senescence and nematode aging, we investigated CK2's role in CR and autophagy. This study indicated that CR upregulated CK2's expression, thereby causing SIRT1 and AMP-activated protein kinase (AMPK) activation. CK2α overexpression, including antisense inhibitors of miR-186, miR-216b, miR-337-3p, and miR-760, stimulated autophagy initiation and nucleation markers (increase in ATG5, ATG7, LC3BII, beclin-1, and Ulk1, and decrease in SQSTM1/p62). The SIRT1 deacetylase, AKT, mammalian target of rapamycin (mTOR), AMPK, and forkhead homeobox type O (FoxO) 3a were involved in CK2-mediated autophagy. The treatment with the AKT inhibitor triciribine, the AMPK activator AICAR, or the SIRT1 activator resveratrol rescued a reduction in the expression of lgg-1 (the Caenorhabditis elegans ortholog of LC3B), bec1 (the C. elegans ortholog of beclin-1), and unc-51 (the C. elegans ortholog of Ulk1), mediated by kin-10 (the C. elegans ortholog of CK2β) knockdown in nematodes. Thus, this study indicated that CK2 acted as a positive regulator in CR and autophagy, thereby suggesting that these four miRs' antisense inhibitors can be used as CR mimetics or autophagy inducers.