• 제목/요약/키워드: autophagy

검색결과 494건 처리시간 0.027초

The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in Caenorhabditis elegans

  • Kang, Chanhee;Avery, Leon
    • Molecules and Cells
    • /
    • 제44권7호
    • /
    • pp.529-537
    • /
    • 2021
  • Most animals face frequent periods of starvation throughout their entire life and thus need to appropriately adjust their behavior and metabolism during starvation for their survival. Such adaptive responses are regulated by a complex set of systemic signals, including hormones and neuropeptides. While much progress has been made in identifying pathways that regulate nutrient-excessive states, it is still incompletely understood how animals systemically signal their nutrient-deficient states. Here, we showed that the FMRFamide neuropeptide FLP-20 modulates a systemic starvation response in Caenorhabditis elegans. We found that mutation of flp-20 rescued the starvation hypersensitivity of the G protein β-subunit gpb-2 mutants by suppressing excessive autophagy. FLP-20 acted in AIB neurons, where the metabotropic glutamate receptor MGL-2 also functions to modulate a systemic starvation response. Furthermore, FLP-20 modulated starvation-induced fat degradation in a manner dependent on the receptor-type guanylate cyclase GCY-28. Collectively, our results reveal a circuit that senses and signals nutrient-deficient states to modulate a systemic starvation response in multicellular organisms.

New strategies for germ cell cryopreservation: Cryoinjury modulation

  • Sang-Eun Jung;Buom-Yong Ryu
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권4호
    • /
    • pp.213-222
    • /
    • 2023
  • Cryopreservation is an option for the preservation of pre- or post-pubertal female or male fertility. This technique not only is beneficial for human clinical applications, but also plays a crucial role in the breeding of livestock and endangered species. Unfortunately, frozen germ cells, including oocytes, sperm, embryos, and spermatogonial stem cells, are subject to cryoinjury. As a result, various cryoprotective agents and freezing techniques have been developed to mitigate this damage. Despite extensive research aimed at reducing apoptotic cell death during freezing, a low survival rate and impaired cell function are still observed after freeze-thawing. In recent decades, several cell death pathways other than apoptosis have been identified. However, the relationship between these pathways and cryoinjury is not yet fully understood, although necroptosis and autophagy appear to be linked to cryoinjury. Therefore, gaining a deeper understanding of the molecular mechanisms of cryoinjury could aid in the development of new strategies to enhance the effectiveness of the freezing of reproductive tissues. In this review, we focus on the pathways through which cryoinjury leads to cell death and propose novel approaches to enhance freezing efficacy based on signaling molecules.

Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking

  • Agrahari, Gaurav;Sah, Shyam Kishor;Kim, Tae-Yoon
    • BMB Reports
    • /
    • 제51권7호
    • /
    • pp.344-349
    • /
    • 2018
  • Therapeutic applications of mesenchymal stem cells (MSCs) are limited due to their early death within the first few days of transplantation. Therefore, to improve the efficacy of cell-based therapies, it is necessary to manipulate MSCs so that they can resist various stresses imposed by the microenvironment. Moreover, the role of superoxide dismutase 3 (SOD3) in regulating such survival under different stress conditions remain elusive. In this study, we overexpressed SOD3 in MSCs (SOD3-MSCs) and evaluated its effect under serum starvation conditions. Nutritional limitation can decrease the survival rate of transplanted MSCs and thus can reduce their efficacy during therapy. Interestingly, we found that SOD3-MSCs exhibited reduced reactive oxygen species levels and greater survival rates than normal MSCs under serum-deprived conditions. In addition, overexpression of SOD3 attenuated starvation-induced apoptosis with increased autophagy in MSCs. Moreover, we have demonstrated that SOD3 protects MSCs against the negative effects of serum deprivation via modulation of AMP-activated protein kinase/sirtulin 1, extracellular signal-regulated kinase activation, and promoted Forkhead box O3a trafficking to the nucleus. Taken together, these results demonstrate that SOD3 promotes MSCs survival and add further evidence to the concept that SOD3-MSCs may be a potential therapeutic agent with better outcomes than normal MSCs for various diseases involving oxidative stress and compromised MSCs survival during therapy.

Altered Cell to Cell Communication, Autophagy and Mitochondrial Dysfunction in a Model of Hepatocellular Carcinoma: Potential Protective Effects of Curcumin and Stem Cell Therapy

  • Tork, Ola M;Khaleel, Eman F;Abdelmaqsoud, Omnia M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8271-8279
    • /
    • 2016
  • Background: Hepato-carcinogenesis is multifaceted in its molecular aspects. Among the interplaying agents are altered gap junctions, the proteasome/autophagy system, and mitochondria. The present experimental study was designed to outline the roles of these players and to investigate the tumor suppressive effects of curcumin with or without mesenchymal stem cells (MSCs) in hepatocellular carcinoma (HCC). Materials and Methods: Adult female albino rats were divided into normal controls and animals with HCC induced by diethyl-nitrosamine (DENA) and $CCl_4$. Additional groups treated after HCC induction were: Cur/HCC which received curcumin; MSCs/HCC which received MSCs; and Cur+MSCs/HCC which received both curcumin and MSCs. For all groups there were histopathological examination and assessment of gene expression of connexin43 (Cx43), ubiquitin ligase-E3 (UCP-3), the autophagy marker LC3 and coenzyme-Q10 (Mito.Q10) mRNA by real time, reverse transcription-polymerase chain reaction, along with measurement of LC3II/LC3I ratio for estimation of autophagosome formation in the rat liver tissue. In addition, the serum levels of ALT, AST and alpha fetoprotein (AFP), together with the proinflammatory cytokines $TNF{\alpha}$ and IL-6, were determined in all groups. Results: Histopathological examination of liver tissue from animals which received DENA-$CCl_4$ only revealed the presence of anaplastic carcinoma cells and macro-regenerative nodules. Administration of curcumin, MSCs; each alone or combined into rats after induction of HCC improved the histopathological picture. This was accompanied by significant reduction in ${\alpha}$-fetoprotein together with proinflammatory cytokines and significant decrease of various liver enzymes, in addition to upregulation of Cx43, UCP-3, LC3 and Mito.Q10 mRNA. Conclusions: Improvement of Cx43 expression, nonapoptotic cell death and mitochondrial function can repress tumor growth in HCC. Administration of curcumin and/or MSCs have tumor suppressive effects as they can target these mechanisms. However, further research is still needed to verify their effectiveness.

N-Adamantyl-4-methylthiazol-2-amine suppresses glutamate-induced autophagic cell death via PI3K/Akt/mTOR signaling pathways in cortical neurons

  • Yang, Seung-Ju;Han, A Reum;Choi, Hye-Rim;Hwang, Kyouk;Kim, Eun-A;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제53권10호
    • /
    • pp.527-532
    • /
    • 2020
  • We recently reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) attenuates glutamate-induced oxidative stress and inflammation in the brain. In this study, we investigated KHG 26693 as a therapeutic agent against glutamate-induced autophagic death of cortical neurons. Treatment with KHG26693 alone did not affect the viability of cultured cortical neurons but was protective against glutamate-induced cytotoxicity in a concentration-dependent manner. KHG26693 attenuated the glutamate-induced increase in protein levels of LC3, beclin-1, and p62. Whereas glutamate decreased the phosphorylation of PI3K, Akt, and mTOR, these levels were restored by treatment with KHG26693. These results suggest that KHG26693 inhibits glutamate-induced autophagy by regulating PI3K/Akt/mTOR signaling. Finally, KHG26693 treatment also attenuated glutamate-induced increases in reactive oxygen species, glutathione, glutathione peroxidase, and superoxide dismutase levels in cortical neurons, indicating that KHG26693 also protects cortical neurons against glutamate-induced autophagy by regulating the reactive oxygen species scavenging system.

Memantine Induces NMDAR1-Mediated Autophagic Cell Death in Malignant Glioma Cells

  • Yoon, Wan-Soo;Yeom, Mi-Young;Kang, Eun-Sun;Chung, Yong-An;Chung, Dong-Sup;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권2호
    • /
    • pp.130-137
    • /
    • 2017
  • Objective : Autophagy is one of the key responses of cells to programmed cell death. Memantine, an approved anti-dementia drug, has an antiproliferative effect on cancer cells but the mechanism is poorly understood. The aim of the present study was to test the possibility of induction of autophagic cell death by memantine in glioma cell lines. Methods : Glioma cell lines (T-98 G and U-251 MG) were used for this study. Results : The antiproliferative effect of memantine was shown on T-98 G cells, which expressed N-methyl-D-aspartate 1 receptor (NMDAR1). Memantine increased the autophagic-related proteins as the conversion ratio of light chain protein 3-II (LC3-II)-/LC3-I and the expression of beclin-1. Memantine also increased formation of autophagic vacuoles observed under a transmission electron microscope. Transfection of small interfering RNA (siRNA) to knock down NMDAR1 in the glioma cells induced resistance to memantine and decreased the LC3-II/LC3-I ratio in T-98 G cells. Conclusion : Our study demonstrates that in glioma cells, memantine inhibits proliferation and induces autophagy mediated by NMDAR1.

Malignant transformation of oral lichen planus and related genetic factors

  • Hwang, Eurim C.;Choi, Se-Young;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • 제45권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Oral lichen planus (OLP) is a chronic inflammatory disease observed in approximately 0.5-2.2% of the population, and it is recognized as a premalignant lesion that can progress into oral squamous cell carcinoma (OSCC). The rate of malignant transformation is approximately 1.09-2.3%, and the risk factors for malignant transformation are age, female, erosive type, and tongue site location. Malignant transformation of OLP is likely related to the low frequency of apoptotic phenomena. Therefore, apoptosis-related genetic factors, like p53, BCL-2, and BAX are reviewed. Increased p53 expression and altered expression of BCL-2 and BAX were observed in OLP patients, and the malignant transformation rate in these patients was relatively higher. The involvement of microRNA (miRNA) in the malignant transformation of OLP is also reviewed. Because autophagy is involved in cell survival and death through the regulation of various cellular processes, autophagy-related genetic factors may function as factors for malignant transformation. In OLP, decreased levels of ATG9B mRNA and a higher expression of IGF1 were observed, suggesting a reduction in cell death and autophagic response. Activated IGF1-PI3K/AKT/mTor cascade may play an important role in a signaling pathway related to the malignant transformation of OLP to OSCC. Recent research has shown that miRNAs, such as miR-199 and miR-122, activate the cascade, increasing the prosurvival and proproliferative signals.

Gonadotropins Improve Porcine Oocyte Maturation and Embryo Development through Regulation of Maternal Gene Expression

  • Wang, Qing-Ling;Zhao, Ming-Hui;Jin, Yong-Xun;Kim, Nam-Hyung;Cui, Xiang-Shun
    • 한국수정란이식학회지
    • /
    • 제28권4호
    • /
    • pp.361-371
    • /
    • 2013
  • The present study assessed the effect of FSH and LH on oocyte meiotic, cytoplasmic maturation and on the expression level and polyadenylation status of several maternal genes. Cumulus-oocyte complexes were cultured in the presence of FSH, LH, or the combination of FSH and LH. Significant cumulus expansion and nuclear maturation was observed upon exposure to FSH alone and to the combination of FSH and LH. The combination of FSH and LH during entire IVM increased the mRNA level of four maternal genes, C-mos, Cyclin B1, Gdf9 and Bmp15, at 28 h. Supplemented with FSH or LH significantly enhanced the polyadenylation of Gdf9 and Bmp15; and altered the expression level of Gdf9 and Bmp15. Following parthenogenesis, the exposure of oocytes to combination of FSH and LH during IVM significantly increased cleavage rate, blastocyst formation rate and total cell number, and decreased apoptosis. In addition, FSH and LH down-regulated the autophagy gene Atg6 and upregulated the apoptosis gene Bcl-xL at the mRNA level in blastocysts. These data suggest that the FSH and LH enhance meiotic and cytoplasmic maturation, possibly through the regulation of maternal gene expression and polyadenylation. Overall, we show here that FSH and LH inhibit apoptosis and autophagy and improve parthenogenetic embryo competence and development.

Oligonol promotes anti-aging pathways via modulation of SIRT1-AMPK-Autophagy Pathway

  • Park, Seul-Ki;Seong, Rak-Kyun;Kim, Ji-Ae;Son, Seok-Jun;Kim, Younghoon;Yokozawa, Takako;Shin, Ok Sarah
    • Nutrition Research and Practice
    • /
    • 제10권1호
    • /
    • pp.3-10
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Oligonol, mainly found in lychee fruit, is an antioxidant polyphenolic compound which has been shown to have anti-inflammatory and anti-cancer properties. The detailed mechanisms by which oligonol may act as an anti-aging molecule have not been determined. MATERIALS/METHODS: In this study, we evaluated the ability of oligonol to modulate sirtuin (SIRT) expression in human lung epithelial (A549) cells. Oligonol was added to A549 cells and reactive oxygen species production, mitochondrial superoxide formation, and p21 protein levels were measured. Signaling pathways activated upon oligonol treatment were also determined by western blotting. Furthermore, the anti-aging effect of oligonol was evaluated ex vivo in mouse splenocytes and in vivo in Caenorhabditis elegans. RESULTS: Oligonol specifically induced the expression of SIRT1, whose activity is linked to gene expression, metabolic control, and healthy aging. In response to influenza virus infection of A549 cells, oligonol treatment significantly up-regulated SIRT1 expression and down-regulated viral hemagglutinin expression. Oligonol treatment also resulted in the activation of autophagy pathways and the phosphorylation of AMP-activated protein kinase (AMPK). Furthermore, oligonol-treated spleen lymphocytes from old mice showed increased cell proliferation, and mRNA levels of SIRT1 in the lungs of old mice were significantly lower than those in the lungs of young mice. Additionally, in vivo lethality assay revealed that oligonol extended the lifespan of C. elegans infected with lethal Vibrio cholerae. CONCLUSIONS: These data demonstrated that oligonol may act as an anti-aging molecule by modulating SIRT1/autophagy/AMPK pathways.