• Title/Summary/Keyword: autophagic cell death

Search Result 57, Processing Time 0.024 seconds

The Effect of Autophagy to Cell Death in Nutrient-Deprived H460 Cells (영양분이 결핍된 H460 세포주에서 자가포식이 세포사멸에 미치는 영향)

  • Jang, Hye-Yeon;Jo, Hyang-Jeong;Hwhang, Ki-Eun;Kim, So-Young;Lee, Kang-Kyoo;Moon, Sun-Rock;Shin, Jeong-Hyun;Cho, Kyung-Hwa;Lee, Mi-Kung;Lee, Sam-Youn;Park, Soon-Ah;Park, Jong-Kun;Kim, Hui-Jung;Yang, Sei-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.2
    • /
    • pp.81-94
    • /
    • 2010
  • Background: Autophagy is an important adaptive mechanism in normal development and in response to changing environmental stimuli in cancer. Previous papers have reported that different types of cancer underwent autophagy to obtain amino acids as energy source of dying cells in nutrient-deprived conditions. However, whether or not autophagy in the process of lung cancer causes death or survival is controversial. Therefore in this study, we investigated whether nutrient deprivation induces autophagy in human H460 lung cancer cells. Methods: H460, lung cancer cells were incubated in RPMI 1640 medium, and the starved media, which are BME and RPMI media without serum, including 2-deoxyl-D-glucose according to time dependence. To evaluate the viability and find out the mechanism of cell death under nutrient-deprived conditions, the MTT assay and flow cytometry were done and analyzed the apoptotic and autophagic related proteins. It is also measured the development of acidic vascular organelles by acridine orange. Results: The nutrient-deprived cancer cell is relatively sensitive to cell death rather than normal nutrition. Massive cytoplasmic vacuolization was seen under nutrient-deprived conditions. Autophagic vacuoles were visible at approximately 12 h and as time ran out, vacuoles became larger and denser with the increasing number of vacuoles. In addition, the proportion of acridine orange stain-positive cells increased according to time dependence. Localization of GFP-LC3 in cytoplasm and expression of LC-3II and Beclin 1 were increased according to time dependence on nutrient-deprived cells. Conclusion: Nutrient deprivation induces cell death through autophagy in H460 lung cancer cells.

VvpM Induces Human Cell Death via Multifarious Modes Including Necroptosis and Autophagy

  • Lee, Mi-Ae;Kim, Jeong-A;Shin, Mee-Young;Lee, Jeong K.;Park, Soon-Jung;Lee, Kyu-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.302-306
    • /
    • 2015
  • VvpM, one of the extracellular metalloproteases produced by Vibrio vulnificus, induces apoptotic cell death via a pathway consisting of ERK activation, cytochrome c release, and activation of caspases-9 and -3. VvpM-treated cells also showed necrotic cell death as stained by propidium iodide (PI). The percentage of PI-stained cells was decreased by pretreatment with Necrostatin-1, indicating that VvpM-mediated cell death occurs through necroptosis. The appearance of autophagic vesicles and lipidated form of light-chain-3B in rVvpM-treated cells suggests an involvement of autophagy in this process. Therefore, the multifarious action of VvpM might be one of the factors responsible for V. vulnificus pathogenesis.

Autophagy in Cervical Cancer: An Emerging Therapeutic Target

  • Pandey, Saumya;Chandravati, Chandravati
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4867-4871
    • /
    • 2012
  • Cervical cancer is a leading cause of morbidity and mortality in women worldwide. Although the human papillomavirus (HPV) is considered the major causative agent of cervical cancer, yet the viral infection alone is not sufficient for cancer progression. The etiopathogenesis of cervical cancer is indeed complex; a precise understanding of the complex cellular/molecular mechanisms underlying the initiation, progression and/or prevention of the uterine cervix is therefore essential. Autophagy is emerging as an important biological mechanism in targeting human cancers, including cervical cancer. Furthermore, autophagy, a process of cytoplasm and cellular organelle degradation in lysosomes, has been implicated in homeostasis. Autophagic flux may vary depending on the cell/tissue type, thereby altering cell fate under stress conditions leading to cell survival and/or cell death. Autophagy may in turn govern tumor metastasis and subsequent carcinogenesis. Inflammation is a known hallmark of cancer. Vascular insufficiency in tumors, including cervical tissue, leads to depletion of glucose and/or oxygen perturbing the osmotic mileu causing extracellular acidosis in the tumor microenvironment that may eventually result in autophagy. Thus, targeted manipulation of complex autophagic signaling may prove to be an innovative strategy in identification of clinically relevant biomarkers in cervical cancer in the near future.

Ataxia-Telangiectasia Mutated Is Involved in Autolysosome Formation

  • Mihwa Hwang;Dong Wha Jun;Bo Ram Song;Hanna Shim;Chang-Hun Lee;Sunshin Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.559-565
    • /
    • 2023
  • Ataxia-telangiectasia mutated (ATM), a master kinase of the DNA damage response (DDR), phosphorylates a multitude of substrates to activate signaling pathways after DNA double-strand breaks (DSBs). ATM inhibitors have been evaluated as anticancer drugs to potentiate the cytotoxicity of DNA damage-based cancer therapy. ATM is also involved in autophagy, a conserved cellular process that maintains homeostasis by degrading unnecessary proteins and dysfunctional organelles. In this study, we report that ATM inhibitors (KU-55933 and KU-60019) provoked accumulation of autophagosomes and p62 and restrained autolysosome formation. Under autophagy-inducing conditions, the ATM inhibitors caused excessive autophagosome accumulation and cell death. This new function of ATM in autophagy was also observed in numerous cell lines. Repression of ATM expression using an siRNA inhibited autophagic flux at the autolysosome formation step and induced cell death under autophagy-inducing conditions. Taken together, our results suggest that ATM is involved in autolysosome formation and that the use of ATM inhibitors in cancer therapy may be expanded.

Autophagy: Noble target mechanisms in natural medicines as anticancer agents (자가식세포작용: 천연물항암제로서의 신규작용기전)

  • Kang, Se-Chan
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.57-66
    • /
    • 2010
  • Programmed cell death systems are important for an active type of cell deaths. Among them, a type of programmed cell death, autophagy is activated in cancer cells in response to multiple stresses and has been demonstrated to promote tumor cell survival and drug resistance. Thus, in the area of cancer, over the time frame form around the 1940s to date, of the 155 small molecules, 73% are other than "synthetic", with 47% actually being either "natural products" or "directly derived therefrom". Autophagy has multiple physiological functions in multicellular organisms, including protein degradation and organelle turnover. Genes and proteins that constitute the basic machinery of the autophagic process were first identified in the yeast system and some of their mammalian orthologues have been characterized as well. Numerous oncogenes, including Akt1, Bcl-2, NF1, PDPK1, class I PI3K, PTEN, and Ras and oncosuppressors, inculuding Bec-1, Bif-1, DAPK-1, p53 and UVRAG suppress or promote the autophagy pathway. Regulation of autophagy in tumors is governed by similar principles of the normal cells, only in a much more complicated manner, given the frequently observed abnormal PI3K activation in cancer and the multitude of interactions between the PI3K/AKT/mTOR pathway and other cell signaling cascades, often also deregulated in tumor cells. Autophagy induction by some anticancer agents underlines the potential utility of its induction as a new cancer treatment modality of development for natural medicines.

Involvement of ROS in Curcumin-induced Autophagic Cell Death

  • Lee, Youn-Ju;Kim, Nam-Yi;Suh, Young-Ah;Lee, Chu-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Many anticancer agents as well as ionizing radiation have been shown to induce autophagy which is originally described as a protein recycling process and recently reported to play a crucial role in various disorders. In HCT116 human colon cancer cells, we found that curcumin, a polyphenolic phytochemical extracted from the plant Curcuma longa, markedly induced the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II and degradation of sequestome-1 (SQSTM1) which is a marker of autophagosome degradation. Moreover, we found that curcumin caused GFP-LC3 formation puncta, a marker of autophagosome, and decrease of GFP-LC3 and SQSTM1 protein level in GFP-LC3 expressing HCT116 cells. It was further confirmed that treatment of cells with hydrogen peroxide induced increase of LC3 conversion and decrease of GFP-LC3 and SQSTM1 levels, but these changes by curcumin were almost completely blocked in the presence of antioxidant, N-acetylcystein (NAC), indicating that curcumin leads to reactive oxygen species (ROS) production, which results in autophagosome development and autolysosomal degradation. In parallel with NAC, SQSTM1 degradation was also diminished by bafilomycin A, a potent inhibitor of autophagosome-lysosome fusion, and cell viability assay was further confirmed that cucurmin-induced cell death was partially blocked by bafilomycin A as well as NAC. We also observed that NAC abolished curcumin-induced activation of extracelluar signal-regulated kinases (ERK) 112 and p38 mitogen-activated protein kinases (MAPK), but not Jun N-terminal kinase (JNK). However, the activation of ERK1/2 and p38 MAPK seemed to have no effect on the curcumin-induced autophagy, since both the conversion of LC3 protein and SQSTM1 degradation by curcumin was not changed in the presence of NAC. Taken together, our data suggest that curcumin induced ROS production, which resulted in autophagic activation and concomitant cell death in HCT116 human colon cancer cell. However, ROS-dependent activation of ERK1/2 and p38 MAPK, but not JNK, might not be involved in the curcumin-induced autophagy.

Autophagy Inhibition Promotes Gambogic Acid-induced Suppression of Growth and Apoptosis in Glioblastoma Cells

  • Luo, Guo-Xuan;Cai, Jun;Lin, Jing-Zhi;Luo, Wei-Shi;Luo, Heng-Shan;Jiang, Yu-Yang;Zhang, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6211-6216
    • /
    • 2012
  • Objective: To investigate the effects of gambogic acid (GA) on the growth of human malignant glioma cells. Methods: U251MG and U87MG human glioma cell lines were treated with GA and growth and proliferation were investigated by MTT and colony formation assays. Cell apoptosis was analyzed by annexin V FITC/PI flow cytometry, mitochondrial membrane potential assays and DAPI nuclear staining. Monodansylcadaverine (MDC) staining and GFP-LC3 localisation were used to detect autophagy. Western blotting was used to investigate the molecular changes that occurred in the course of GA treatment. Results: GA treatment significantly suppressed cell proliferation and colony formation, induced apoptosis in U251 and U87MG glioblastoma cells in a time- and dose-dependent manner. GA treatment also lead to the accumulation of monodansylcadaverine (MDC) in autophagic vacuoles, upregulated expressions of Atg5, Beclin 1 and LC3-II, and the increase of punctate fluorescent signals in glioblastoma cells pre-transfected with GFP-tagged LC3 plasmid. After the combination treatment of autophagy inhitors and GA, GA mediated growth inhibition and apoptotic cell death was further potentiated. Conclusion: Our results suggested that autophagic responses play roles as a self-protective mechanism in GA-treated glioblastoma cells, and autophagy inhibition could be a novel adjunctive strategy for enhancing chemotherapeutic effect of GA as an anti-malignant glioma agent.

Fluoxetine Simultaneously Induces Both Apoptosis and Autophagy in Human Gastric Adenocarcinoma Cells

  • Po, Wah Wah;Thein, Wynn;Khin, Phyu Phyu;Khing, Tin Myo;Han, Khin Wah Wah;Park, Chan Hee;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.202-210
    • /
    • 2020
  • Fluoxetine is used widely as an antidepressant for the treatment of cancer-related depression, but has been reported to also have anti-cancer activity. In this study, we investigated the cytotoxicity of fluoxetine to human gastric adenocarcinoma cells; as shown by the MTT assay, fluoxetine induced cell death. Subsequently, cells were treated with 10 or 20 µM fluoxetine for 24 h and analyzed. Apoptosis was confirmed by the increased number of early apoptotic cells, shown by Annexin V- propidium iodide staining. Nuclear condensation was visualized by DAPI staining. A significant increase in the expression of cleaved PARP was observed by western blotting. The pan-caspase inhibitor Z-VAD-FMK was used to detect the extent of caspase-dependent cell death. The induction of autophagy was determined by the formation of acidic vesicular organelles (AVOs), which was visualized by acridine orange staining, and the increased expression of autophagy markers, such as LC3B, Beclin 1, and p62/SQSTM 1, observed by western blotting. The expression of upstream proteins, such as p-Akt and p-mTOR, were decreased. Autophagic degradation was evaluated by using bafilomycin, an inhibitor of late-stage autophagy. Bafilomycin did not significantly enhance LC3B expression induced by fluoxetine, which suggested autophagic degradation was impaired. In addition, the co-administration of the autophagy inhibitor 3-methyladenine and fluoxetine significantly increased fluoxetine-induced apoptosis, with decreased p-Akt and markedly increased death receptor 4 and 5 expression. Our results suggested that fluoxetine simultaneously induced both protective autophagy and apoptosis and that the inhibition of autophagy enhanced fluoxetine-induced apoptosis through increased death receptor expression.

N-Adamantyl-4-methylthiazol-2-amine suppresses glutamate-induced autophagic cell death via PI3K/Akt/mTOR signaling pathways in cortical neurons

  • Yang, Seung-Ju;Han, A Reum;Choi, Hye-Rim;Hwang, Kyouk;Kim, Eun-A;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.527-532
    • /
    • 2020
  • We recently reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) attenuates glutamate-induced oxidative stress and inflammation in the brain. In this study, we investigated KHG 26693 as a therapeutic agent against glutamate-induced autophagic death of cortical neurons. Treatment with KHG26693 alone did not affect the viability of cultured cortical neurons but was protective against glutamate-induced cytotoxicity in a concentration-dependent manner. KHG26693 attenuated the glutamate-induced increase in protein levels of LC3, beclin-1, and p62. Whereas glutamate decreased the phosphorylation of PI3K, Akt, and mTOR, these levels were restored by treatment with KHG26693. These results suggest that KHG26693 inhibits glutamate-induced autophagy by regulating PI3K/Akt/mTOR signaling. Finally, KHG26693 treatment also attenuated glutamate-induced increases in reactive oxygen species, glutathione, glutathione peroxidase, and superoxide dismutase levels in cortical neurons, indicating that KHG26693 also protects cortical neurons against glutamate-induced autophagy by regulating the reactive oxygen species scavenging system.

Induction of Autophagy and Apoptosis by the Roots of Platycodon grandiflorum on NCI-H460 Human Non-small Lung Carcinoma Cells (길경(桔梗)에 의한 NCI-H460 인체 비소세포폐암 세포에서의 autophagy 및 apoptosis 유발 효과)

  • Hong, Su-Hyun;Han, Min-Ho;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Choi, Yung-Hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.317-331
    • /
    • 2014
  • Objectives: The root of Platycodon grandiflorum (PG) has been known to possess a range of pharmacological activities including anti-cancer, anti-inflammatory, and anti-oxidant effects. The present study was designed to investigate whether or not PG-induced cell death was connected with autophagy and apoptosis in NCI-H460 human lung cancer cells. Methods: Effects on the cell viability and apoptotic activity were quantified using MTT assays and flow cytometry analysis, respectively. Protein activation was measured by immunoblotting. Autophagy was measured by LC3 immunofluorescence and immunoblotting. ROS production and loss of mitochondria membrane potential (MMP) were checked with flow cytometry analysis. Results: Following exposure to PG, NCI-H460 cell proliferation decreased simultaneously inducing autophagic vacuoles and up-regulation of microtubule-associated protein 1 light chain 3 and beclin-1 protein expressions. Interestingly, pre-treated with autophagy inhibitors, 3-methyladenin or bafilomycin A1 further triggered reduction of cell viability. PG treatment also induced apoptosis that was related modulation of Bcl-2 family proteins, death receptors and activation of caspases. In addition, PG stimulation clearly enhanced loss of MMP and reactive oxygen species (ROS) generation. Conclusions: Our results suggest that PG elicited both autophagy and apoptosis by increasing loss of MMP and ROS production. PG induced-autophagy may play a cell protective role.