Collecting a rich but meaningful training data plays a key role in machine learning and deep learning researches for a self-driving vehicle. This paper introduces a detailed overview of existing open-source simulators which could be used for training self-driving vehicles. After reviewing the simulators, we propose a new effective approach to make a synthetic autonomous vehicle simulation platform suitable for learning and training artificial intelligence algorithms. Specially, we develop a synthetic simulator with various realistic situations and weather conditions which make the autonomous shuttle to learn more realistic situations and handle some unexpected events. The virtual environment is the mimics of the activity of a genuine shuttle vehicle on a physical world. Instead of doing the whole experiment of training in the real physical world, scenarios in 3D virtual worlds are made to calculate the parameters and training the model. From the simulator, the user can obtain data for the various situation and utilize it for the training purpose. Flexible options are available to choose sensors, monitor the output and implement any autonomous driving algorithm. Finally, we verify the effectiveness of the developed simulator by implementing an end-to-end CNN algorithm for training a self-driving shuttle.
Journal of the Korean Institute of Intelligent Systems
/
v.23
no.1
/
pp.29-34
/
2013
This study presents the remote control of a mobile robot using iPhone based on ad hoc communication. Two control interfaces are proposed to control a mobile robot using iPhone : Remote control by a user and autonomous control. To evaluate the effectiveness of algorithms for trajectory following, a simulator are developed where a virtual robot follows a referenced trajectory in a monitor by iPhone interface. In the proposed simulator, some algorithms are tested how they work well or not for trajectory following of a mobile robot. Comparative results by remote user control and autonomous control are shown. Results of an experiment show that the proposed simulator can be effectively used for testing the effectiveness of autonomous tracking algorithms.
Journal of the Society of Naval Architects of Korea
/
v.60
no.6
/
pp.406-415
/
2023
In this study, we focused on developing and verifying ship collision avoidance algorithms using Unity simulator and ROS(Robot Operating System). ROS is used to establish an environment where communication between different operating systems is possible, and a dynamic model of a ship is constructed within Unity simulator. The Lidar data collected in Unity environment is passed to the system based on python through ROS. In the system based on python, control command values were created through the logic of the collision avoidance algorithm using data, and the values were transferred back to Unity to control the movement of the virtual ship. Through the developed simulation system, the reliability of the collision avoidance algorithm of ships with two different forms in an environment similar to the actual physical world was confirmed. As a result, it was confirmed on the simulator that it could be avoided without collision even in an environment with various types of obstacles, and that the avoidance characteristics according to the dynamics of the ship could be analyzed.
Im, Ji Ung;Kang, Min Su;Park, Dong Hyuk;Won, Jong hoon
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.6
/
pp.242-263
/
2021
This paper presents a method to implement a low-cost driving simulator for developing autonomous driving algorithms. This is implemented by using GTA V, a physical engine-based commercial game software, containing a function to emulate output and data of various sensors for autonomous driving. For this, NF of Script Hook V is incorporated to acquire GT data by accessing internal data of the software engine, and then, various sensor data for autonomous driving are generated. We present an overall function of the developed driving simulator and perform a verification of individual functions. We explain the process of acquiring GT data via direct access to the internal memory of the game engine to build up an autonomous driving algorithm development environment. And, finally, an example applicable to artificial neural network training and performance evaluation by processing the emulated sensor output is included.
The autonomous vehicle is based on an advanced driver assistance system (ADAS) consisting of a sensor that collects information about the surrounding environment and a control module that determines the measured data. As interest in autonomous navigation technology grows recently, an easy development framework for ADAS beginners and learners is needed. However, existing development and verification methods are based on high performance vehicle simulator, which has drawbacks such as complexity of verification method and high cost. Also, most of the schemes do not provide the sensing data required by the ADAS directly from the simulator, which limits verification reliability. In this paper, we present an interactive ADAS development and verification framework using a 3D vehicle simulator that overcomes the problems of existing methods. ADAS with image recognition based artificial intelligence was implemented as a virtual sensor in a 3D car simulator, and autonomous driving verification was performed in real scenarios.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.23
no.1
/
pp.167-181
/
2024
Utilization of a driving simulator in the development of autonomous driving technology allows us to perform various tests effectively in criticial environments, thereby reducing the development cost and efforts. However, there exists a serious drawback that the driving simulator has a big difference from the real environment, so a problem occurs when the autonomous driving algorithm developed using the driving simulator is applied directly to the real vehicle system. This is defined as so-called Sim2Real problem and can be classified into scenarios, sensor modeling, and vehicle dynamics. This Paper presensts on a method to solve the Sim2Real problem in autonomous driving simulator focusing on IMU sensor. In order to reduce the difference between emulated virtual IMU sensor real IMU sensor, IMU sensor emulation techniques through precision error modeling of IMU sensor are introduced. The error model of IMU sensors takes into account bias, scale factor, misalignmnet, and random walk by IMU sensor grades.
This paper presents a development of simulation environment for validation of autonomous driving (AD) algorithm based on Robot Operating System (ROS). ROS is one of the commonly-used frameworks utilized to control autonomous vehicles. For the evaluation of AD algorithm, a 3D autonomous driving simulator has been developed based on LGSVL. Two additional sensors are implemented in the simulation vehicle. First, Lidar sensor is mounted on the ego vehicle for real-time driving environment perception. Second, GPS sensor is equipped to estimate ego vehicle's position. With the vehicle sensor configuration in the simulation, the AD algorithm can predict the local environment and determine control commands with motion planning. The simulation environment has been evaluated with lane changing and keeping scenarios. The simulation results show that the proposed 3D simulator can successfully imitate the operation of a real-world vehicle.
Oh, Min Jong;Jin, Eun Ju;Han, Mi Seon;Park, Je Jin
KSCE Journal of Civil and Environmental Engineering Research
/
v.44
no.1
/
pp.63-73
/
2024
Autonomous vehicles at Levels 3 to 5, currently under global research and development, seek to replace the driver's perception, judgment, and control processes with various sensors integrated into the vehicle. This integration enables artificial intelligence to autonomously perform the majority of driving tasks. However, autonomous vehicles currently obtain temporary driving permits, allowing them to operate on roads if they meet minimum criteria for autonomous judgment abilities set by individual countries. When autonomous vehicles become more widespread in the future, it is anticipated that buyers may not have high confidence in the ability of these vehicles to avoid hazardous situations due to the limitations of temporary driving permits. In this study, we propose a method for grading the judgment abilities of autonomous vehicles based on a driving simulator experiment comparing and evaluating drivers' abilities to avoid hazardous situations. The goal is to derive evaluation criteria that allow for grading based on specific scenarios and to propose a framework for grading autonomous vehicles. Thirty adults (25 males and 5 females) participated in the driving simulator experiment. The analysis of the experimental results involved K-means cluster analysis and independent sample t-tests, confirming the possibility of classifying the judgment abilities of autonomous vehicles and the statistical significance of such classifications. Enhancing confidence in the risk-avoidance capabilities of autonomous vehicles in future hazardous situations could be a significant contribution of this research.
The advancement of autonomous driving technology is expected to transform cars beyond mere transportation into multifunctional spaces for relaxation and entertainment. As autonomous driving technology becomes more sophisticated, with no need for direct driver control, the interior space of vehicles is anticipated to be utilized for various purposes. Consequently, the importance of car seats, the component most frequently interacted with by passengers during travel, is expected to significantly rise. However, existing car seats are designed according to a seated posture, necessitating verification for passenger safety and seat structure considerations in the context of autonomous driving, where comfortable postures may differ. For these reasons, it is anticipated that the seats of future autonomous vehicles will evolve with the incorporation of additional safety and convenience features. In this study, a three-axis car simulator was employed to investigate seat angles for comfortable postures of passengers in autonomous driving scenarios. Representative postures were identified to enhance passenger convenience. Furthermore, functional design factors contributing to passenger comfort were applied to conduct seat design, seat structure, and collision analysis, with an analysis of the interrelationships among design factors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.