• 제목/요약/키워드: autonomous robot localization

검색결과 132건 처리시간 0.036초

자율주행 물류 이송 로봇 (Development of autonomous driving logistics transport robot)

  • 이정우;김동연;이상윤;박유진;박양우
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.321-322
    • /
    • 2022
  • 본 논문에서는 ROS(Robot Operating System) 기반으로 한 로봇(Robot)에 레이저 거리 센서(LiDAR)를 설치하여 SLAM(Simultaneous Localization And Mapping) 기법으로 지도 정보를 습득 및 저장하고, 이를 기반으로 맵핑된 환경과 환경 내 장애물을 회피하여 안전하고 정확하게 이동할 수 있도록 하였다. ROS는 하드웨어 추상화, 장치 드라이버, 시각화 도구, 패키지 관리 등 로봇 애플리케이션을 개발할 수 있도록 라이브러리와 도구를 제공한다. 또한 로봇 동작에 사용되는 프로세스 간 TCP-IP 통신을 통해 연동할 수 있도록 한다[1]. Ubuntu 18.04 버전의 OS에 ROS Melodic 버전을 설치해서 앱으로 선택된 목적지로 이동하는 물류 이송 로봇을 구현하였다.

  • PDF

DGPS와 연석추출을 이용한 순찰용 로봇의 개발 (Development of Patrol Robot using DGPS and Curb Detection)

  • 김승훈;김문준;강성철;홍석교;노치원
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.140-146
    • /
    • 2007
  • This paper demonstrates the development of a mobile robot for patrol. We fuse differential GPS, angle sensor and odometry data using the framework of extended Kalman filter to localize a mobile robot in outdoor environments. An important feature of road environment is the existence of curbs. So, we also propose an algorithm to find out the position of curbs from laser range finder data using Hough transform. The mobile robot builds the map of the curbs of roads and the map is used fur tracking and localization. The patrol robot system consists of a mobile robot and a control station. The mobile robot sends the image data from a camera to the control station. The remote control station receives and displays the image data. Also, the patrol robot system can be used in two modes, teleoperated or autonomous. In teleoperated mode, the teleoperator commands the mobile robot based on the image data. On the other hand, in autonomous mode, the mobile robot has to autonomously track the predefined waypoints. So, we have designed a path tracking controller to track the path. We have been able to confirm that the proposed algorithms show proper performances in outdoor environment through experiments in the road.

퍼지 규칙을 이용한 비전 및 무선 센서 네트워크 기반의 이동로봇의 자율 주행 및 위치 인식 (Navigation and Localization of Mobile Robot Based on Vision and Sensor Network Using Fuzzy Rules)

  • 허준영;강근택;이원창
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.673-674
    • /
    • 2008
  • This paper presents a new navigation algorithm of an autonomous mobile robot with vision and IR sensors, Zigbee Sensor Network using fuzzy rules. We also show that the developed mobile robot with the proposed algorithm is navigating very well in complex unknown environments.

  • PDF

RFID를 이용한 이동로봇의 위치인식기술 (Localization of Mobile Robot Based on Radio Frequency Identification Devices)

  • 이현정;최규천;이민철;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.41-46
    • /
    • 2006
  • Ubiquitous location based services, offer helpful services anytime and anywhere by using real-time location information of objects based on ubiquitous network. Particularly, autonomous mobile robots can be a solution for various applications related to ubiquitous location based services, e.g. in hospitals, for cleaning, at airports or railway stations. However, a meaningful and still unsolved problem for most applications is to develop a robust and cheap positioning system. A typical example of position measurements is dead reckoning that is well known for providing a good short-term accuracy, being inexpensive and allowing very high sampling rates. However, the measurement always has some accumulated errors because the fundamental idea of dead reckoning is the integration of incremental motion information over time. The other hand, a localization system using RFID offers absolute position of robots regardless of elapsed time. We construct an absolute positioning system based on RFID and investigate how localization technique can be enhanced by RFID through experiment to measure the location of a mobile robot. Tags are placed on the floor at 5cm intervals in the shape of square in an arbitrary space and the accuracy of position measurement is investigated . To reduce the error and the variation of error, a weighting function based on Gaussian function is used. Different weighting values are applied to position data of tags since weighting values follow Gaussian function.

COAG 특징과 센서 데이터 형상 기반의 후보지 선정을 이용한 위치추정 정확도 향상 (Improvement of Localization Accuracy with COAG Features and Candidate Selection based on Shape of Sensor Data)

  • 김동일;송재복;최지훈
    • 로봇학회논문지
    • /
    • 제9권2호
    • /
    • pp.117-123
    • /
    • 2014
  • Localization is one of the essential tasks necessary to achieve autonomous navigation of a mobile robot. One such localization technique, Monte Carlo Localization (MCL) is often applied to a digital surface model. However, there are differences between range data from laser rangefinders and the data predicted using a map. In this study, commonly observed from air and ground (COAG) features and candidate selection based on the shape of sensor data are incorporated to improve localization accuracy. COAG features are used to classify points consistent with both the range sensor data and the predicted data, and the sample candidates are classified according to their shape constructed from sensor data. Comparisons of local tracking and global localization accuracy show the improved accuracy of the proposed method over conventional methods.

Experimental Research of Map Building and Localization at Human Co-existing Real Environments

  • Lee, Dong-Heui;Chung, Woo-Jin;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1184-1189
    • /
    • 2003
  • Map building and position estimation capabilities are practically indispensable for a mobile robot to execute its given tasks in its working environments. An autonomous map building method and a smart localization method is proposed in our previous works. The experimental verifications are carried out in this paper. We applied the proposed algorithms to mobile service robots in large-scale indoor buildings. Experimental results show that our strategy is reliable and feasible in tough conditions like non-polygonal and dynamic environments. The advantages of the algorithms are well-illustrated through real experiments.

  • PDF

실내 자율형 주행로봇의 자기위치 추정을 위한 보상필터 설계 (Complementary Filtering for the Self-Localization of Indoor Autonomous Mobile Robots)

  • 한재원;황종현;홍성경;류영선
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1110-1116
    • /
    • 2010
  • This paper present an effective complementary filtering method using encoder and gyro sensors for the self-localization(including heading and velocity) of indoor mobile robot. The main idea of the proposed approach is to find the pros and cons of each sensor through a various maneuvering tests and to design of an adaptive complementary filter that works for the entire maneuvering phases. The proposed method is applied to an indoor mobile robot and the performances are verified through extensive experiments.

ROS 기반 모바일 로봇을위한 다중 층 자율 주행 시스템 설계 (Design of Multiple Floors Autonomous Navigation System Based On ROS Enabled Mobile Robots)

  • 함디 아흐메드;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.55-57
    • /
    • 2018
  • In Simultaneous Localization and Mapping (SLAM), the robot acquire its map of environment while simultaneously localize itself relative to the map. Now a day, a map acquired by the mobile robots limit to specific area, in an indoor environment and cannot able to navigate autonomous between different floors. We propose a design that could able to overcome this issue in order to navigate multiple floors with one end goal mission to a target destination in the course of autonomous navigation. In this research, we consider all the floors have identical structural arrangement. Internet of Things (IoT) playing crucial role in bridging between "things" and Robot Operating System (ROS) enabled mobile robots.

  • PDF

Self-localization from the panoramic views for autonomous mobile robots

  • Jo, Kang-Hyun;Kang, Hyun-Deok;Kim, Tae-Ho;Inhyuk Moon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.6-49
    • /
    • 2001
  • This paper describes a self-localization method for the mobile robot using panoramic view images. A panoramic view image has the information of location of the objects from the viewer robot and direction between the objects at a position. Among the sequence of panoramic view images, the target objects in the image like traffic signs, facade of a building, road signs, etc. locate in the real world so that robot´s position and direction deliver to localize from his view. With the previously captured panoramic images, the method calculates the distance and direction of the region of interest, corresponds the regions between the sequences, and identifies the location in the world. To obtain the region, vertical edge line segments

  • PDF

Onboard dynamic RGB-D simultaneous localization and mapping for mobile robot navigation

  • Canovas, Bruce;Negre, Amaury;Rombaut, Michele
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.617-629
    • /
    • 2021
  • Although the actual visual simultaneous localization and mapping (SLAM) algorithms provide highly accurate tracking and mapping, most algorithms are too heavy to run live on embedded devices. In addition, the maps they produce are often unsuitable for path planning. To mitigate these issues, we propose a completely closed-loop online dense RGB-D SLAM algorithm targeting autonomous indoor mobile robot navigation tasks. The proposed algorithm runs live on an NVIDIA Jetson board embedded on a two-wheel differential-drive robot. It exhibits lightweight three-dimensional mapping, room-scale consistency, accurate pose tracking, and robustness to moving objects. Further, we introduce a navigation strategy based on the proposed algorithm. Experimental results demonstrate the robustness of the proposed SLAM algorithm, its computational efficiency, and its benefits for on-the-fly navigation while mapping.