• Title/Summary/Keyword: autonomous pathway

Search Result 17, Processing Time 0.023 seconds

Functional Conservation and Divergence of FVE Genes that Control Flowering Time and Cold Response in Rice and Arabidopsis

  • Baek, Il-Sun;Park, Hyo-Young;You, Min Kyoung;Lee, Jeong Hwan;Kim, Jeong-Kook
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.368-372
    • /
    • 2008
  • Recent molecular and genetic studies in rice, a short-day plant, have elucidated both conservation and divergence of photoperiod pathway genes and their regulators. However, the biological roles of rice genes that act within the autonomous pathway are still largely unknown. In order to better understand the function of the autonomous pathway genes in rice, we conducted molecular genetic analyses of OsFVE, a rice gene homologous to Arabidopsis FVE. OsFVE was found to be ubiquitously expressed in vegetative and reproductive organs. Overexpression of OsFVE could rescue the flowering time phenotype of the Arabidopsis fve mutants by up-regulating expression of the SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) and down-regulating FLOWERING LOCUS C (FLC) expression. These results suggest that there may be a conserved function between OsFVE and FVE in the control of flowering time. However, OsFVE overexpression in the fve mutants did not rescue the flowering time phenotype in in relation to the response to intermittent cold treatment.

DEVELOPMENT OF LEVEE WEEDING ROBOT - Pathway Control System on the Strait Levee -

  • Takeda, J.;Takahashi, S.;Torisu, R.;Ashraf, M.A.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.325-332
    • /
    • 2000
  • The objective of this research work is to develop an autonomous levee-weeding robot. In this paper, pathway control system for the robot is developed and simulated. A prototype autonomous vehicle for levee weeding is also developed and used in the actual test. The results obtained in this research work is summarized as follows; 1) The simulated typical time history of lateral displacements and heading angle of the vehicle in straight run shows that the vehicle tendency is always to achieve the target path from any of its deviated position and heading angle. 2) The test run on an asphalt surface by the prototype crawler-type vehicle is in good agreement with the simulation results.

  • PDF

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.

A Heuristic Based Navigation Algorithm for Autonomous Guided Vehicle (경험적 방법에 기초한 무인 반송차의 항법 알고리즘)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.58-67
    • /
    • 1995
  • A path planning algorithm using a laser range finder are presented for real-tiem navigation of an autonomous guided vehicle. Considering that the laser range finder has the excellent resolution with respect to angular and distance measurements, a sophisticated local path planning algorithm is achieved by using the human's heuristic method. In the case of which the man knows not rhe path, but the goal direction, the man forwards to the goal direction, avoids obstacle if it appears, and selects the best pathway when there are multi-passable ways between objects. These heuristic principles are applied to the path decision of autonomous guided vehicle such as forward open, side open and no way. Also, the effectiveness of the established path planning algorithm is estimated by computer simulation in complex environment.

  • PDF

Intercellular Trafficking of Homeodomain Proteins

  • Kim, Seon-Won;Moon, Jun-Yeon;Jung, Jin-Hee;Chen, Xiongyan;Shi, Chunlin;Rim, Yeong-Gil;Kwon, Hey-Jin;Jackson, David;Datla, Raju;Joliot, Alain;Kim, Jae-Yean
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • Homeotic proteins have pivotal roles during the development of both plant and animals. Many homeotic proteins exert control over cell fate in cells where their genes are not expressed, i.e., in a non-cell autonomous manner. Cell-to-cell communication, which delivers critical information for position-dependent specification of cell fate, is an essential biological process in multicellular organisms. In plants, there are two pathways for intercellular communication that have been identified: the ligand/receptor-mediated apoplastic pathway and the plasmodesmata-mediated symplasmic pathway. Regulatory proteins and RNAs traffic symplasmically via plasmodesmata and play a critical role in intercellular communication. Thus, the non-cell autonomous function of homeotic proteins can be explained by the recent discovery of cell-to-cell trafficking of proteins or RNAs. This article specifically focuses on understanding the intercellular movement of homeodomain proteins, a family of homeotic proteins.

A Novel Phototransduction Pathway in the Pineal Gland and Retina

  • Okano, Toshiyuki;Kasahara, Takaoki;Fukada, Yoshitaka
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.246-248
    • /
    • 2002
  • Light is a major environmental signal for entrainment of the circadian clock, but little is known about the phototransduction pathway triggered by light-activation of photoreceptive molecule(s) responsible for the phase shift of the clock in vertebrates. The chicken pineal gland and retina contain the autonomous circadian oscillators together with the photic entrainment pathway, and hence they provide useful experimental model for the clock system. We previously demonstrated the expression and light-dependent activation of rod-type transducin $\alpha$-subunit (Gtl$\alpha$) in the chicken pineal gland. It is unlikely, however, that the pineal Gt$_1$$\alpha$ plays a major role in the photic entrainment, because the light-induced phase shift is unaffected by bloking the signaling function of Gt$_1$$\alpha$. Here, we show the expression of G 11 $\alpha$, an $\alpha$-subunit of another heterotrimeric G-protein, in the chicken pineal gland and retina by cDNA cloning, Northern blot and Western blot analyses. GIl$\alpha$-immunoreactivity was colocalized with pinopsin in the chicken pineal cells and it was found predominantly at the outer segments of photoreceptor cells in the retinal sections, suggesting functional coupling of G11 $\alpha$ with opsins in the both the tissues. By coimmunoprecipitation experiments using the retina, we showed the light- and GTP-dependent interaction between rhodopsin and G11 $\alpha$. Upon ectopic expression of a Gq/ 11-coupled receptor in cultured pineal cells, pharmacological (non-photic) activation of endogenous G11 induced phase-dependent phase shifts of the melatonin rhythm in a manner very similar to the effect of light. These results suggested opsin-G11 pathway contributing to the photic entrainment of the circadian clock.

  • PDF

Genotypic Responses to Cytokinin Requirements in Callus Culture of Korean Varieties of Phaseolus vulgaris L. (강남콩(Phaseolus vulgaris L.) 국내품종의 조직배양에서 유전자형에 따른 Cytokinin 요구성)

  • Kim, Sang-Gu
    • Journal of Plant Biology
    • /
    • v.27 no.3
    • /
    • pp.173-178
    • /
    • 1984
  • Callus culture of Phaseolus vulgaris L. was carried out to examine the ability to grow on cytokinin-free medium. Of the sixteen cultivars of P. vulgaris, eight were classified as completely cytokinin-autonomous phenotype and five were found to be cytokinin-dependent phenotype. Intermediate phenotype was shown in three cultivars. Using cv. Palgong and ca 21 as cytokinin-dependent genotypes, the genotype responses to the cytokinin requirements of callus tissue were studied in detail. The callus tissue of cv. Palgong and ca 21 were never habituated in cytokinin-free medium, regardless tissue origin and cytokinin concentration in previous passages. The result suggests that cytokinin dependency of callus tissue of P. vulgaris cv. Palgong and ca 21 may be due to inactivation of cytokinin biosynthetic pathway.

  • PDF

CCAAT/enhancer binding protein β Induces Post-Switched B Cells to Produce Blimp1 and Differentiate into Plasma Cells

  • Geonhee Lee;Eunkyeong Jang;Jeehee Youn
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.42.1-42.10
    • /
    • 2020
  • Long-lasting post-switched plasma cells (PCs) arise mainly from germinal center (GC) reactions, but little is known about the mechanism by which GC B cells differentiate into PCs. Based on our observation that the expression of the transcription factor CCAAT/enhancer binding protein β (C/EPBβ) is associated with the emergence of post-switched PCs, we enquired whether a cell-autonomous function of C/EPBβ is involved in the program for PC development. To address this, we generated C/EPBβ-deficient mice in which the Cebpb locus was specifically deleted in B cells after transcription of the Ig γ1 constant gene segment (Cγ1). In response to in vitro stimulation, B cells from these Cebpbfl/flCγ1Cre/+ mice had defects in the induction of B lymphocyte-induced maturation protein 1 (Blimp1) and the formation of IgG1+ PCs, but not in proliferation and survival. At steady state, the Cebpbfl/flCγ1Cre/+ mice had reduced serum IgG1 titers but normal IgG2c and IgM titers. Moreover, upon immunization with T-dependent Ag, the mice produced reduced levels of Ag-specific IgG1 Ab, and were defective in the production of Ag-specific IgG1 Ab-secreting cells. These results suggest that a cell-autonomous function of C/EPBβ is crucial for differentiation of post-switched GC B cells into PCs through a Blimp1-dependent pathway.