Browse > Article
http://dx.doi.org/10.5423/PPJ.2005.21.1.021

Intercellular Trafficking of Homeodomain Proteins  

Kim, Seon-Won (Department of Food Science & Nutrition, Division of Applied Life Science (BK21), Gyeongsang National University)
Moon, Jun-Yeon (Division of Applied Life Science (BK21), Gyeongsang National University)
Jung, Jin-Hee (Division of Applied Life Science (BK21), Gyeongsang National University)
Chen, Xiongyan (Division of Applied Life Science (BK21), Gyeongsang National University)
Shi, Chunlin (Division of Applied Life Science (BK21), Gyeongsang National University)
Rim, Yeong-Gil (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Kwon, Hey-Jin (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Jackson, David (Cold Spring Habor Laboratory)
Datla, Raju (Plant Biotechnology Institute, National Research Council of Canada)
Joliot, Alain (Biologie cellulaire des hom$\'{e}$prot$\'{e}$ines)
Kim, Jae-Yean (Division of Applied Life Science (BK21), Plant Molecular Biology & Biotechnology Research Center, Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Publication Information
The Plant Pathology Journal / v.21, no.1, 2005 , pp. 21-26 More about this Journal
Abstract
Homeotic proteins have pivotal roles during the development of both plant and animals. Many homeotic proteins exert control over cell fate in cells where their genes are not expressed, i.e., in a non-cell autonomous manner. Cell-to-cell communication, which delivers critical information for position-dependent specification of cell fate, is an essential biological process in multicellular organisms. In plants, there are two pathways for intercellular communication that have been identified: the ligand/receptor-mediated apoplastic pathway and the plasmodesmata-mediated symplasmic pathway. Regulatory proteins and RNAs traffic symplasmically via plasmodesmata and play a critical role in intercellular communication. Thus, the non-cell autonomous function of homeotic proteins can be explained by the recent discovery of cell-to-cell trafficking of proteins or RNAs. This article specifically focuses on understanding the intercellular movement of homeodomain proteins, a family of homeotic proteins.
Keywords
cell-to-cell communication; homeodomain; intercellular trafficking; KNOTTED1; non-cell autonomous protein; plasmodesmata;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hake, S. and Freeling, M. 1986. Analysis of genetic mosaics shows that the extraepidermal cell divisions in knotted1 mutant maize plants are induced by adjacent mesophyll cells. Nature 320:621-623   DOI   ScienceOn
2 Itaya, A., Woo, Y. M., Masuta, C., Bao, Y., Nelson, R. S. and Ding, B. 1998. Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. Plant Physiol. 118:373-385   DOI   ScienceOn
3 Kragler, F., Monzer, J., Shash, K., Xoconostle-Cazares, B. and Lucas, W. J. 1998. cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J. 15:367-381   DOI   ScienceOn
4 Maizel, A., Bensaude, O., Prochiantz, A. and Joliot, A. 1999. A short region of its homeodomain is necessary for engrailed nuclear export and secretion. Development 126:3183-3190
5 Oparka, K. J., Roberts, A. G., Boevink, P., Santa Cruz, S., Roberts, I., Pradel, K. S., Imlau, A., Kotlizky, G., Sauer, N. and Epel, B. 1999. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743-754   DOI   ScienceOn
6 Rustom, A., Saffrich, R., Markovic, I., Walther, P. and Gerdes, H. 2004. Nanotubular highways for intercellular organelle transport. Science 303:1007-1010   DOI   PUBMED   ScienceOn
7 Jackson, D. and Kim, J. Y. 2003. Dispatch. Intercellular signaling: an elusive player steps forth. Curr. Biol. 13:R349-R350   DOI   ScienceOn
8 Vollbrecht, E., Reiser, L. and Hake, S. 2000. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127:3161-3172
9 Jackson, D., Veit, B. and Hake, S. 1994. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405-413
10 Kragler, F., Monzer, J., Xoconostle-Cazares, B. and Lucas, W. J. 2000. Peptide antagonists of the plasmodesmal macromolecular trafficking pathway. EMBO J. 19:2856-2868   DOI   ScienceOn
11 Vollbrecht, E., Veit, B., Sinha, N. and Hake, S. 1991. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241-243   DOI   ScienceOn
12 Zambryski, P. and Crawford, K. 2000. Plasmodesmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annu. Rev. Cell Dev. Biol. 16:393-421   DOI   ScienceOn
13 Venglat, S. P., Dumonceaux, T., Rozwadowski, K., Parnell, L., Babic, V., Keller, W., Martienssen, R., Selvaraj, G. and Datla, R. 2002. The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc. Natl. Acad. Sci. USA 99:4730-4735
14 Huala, E. and Sussex, I. M. 1993. Determination and Cell Interactions in Reproductive Meristems. Plant Cell 5:1157-1165   DOI   ScienceOn
15 Jackson, D. 2000. Opening up the communication channels: recent insights into plasmodesmal function. Curr. Opin. Plant Biol. 3:394-399   DOI   PUBMED   ScienceOn
16 Poethig, R. S. 1987. Clonal analysis of cell lineage patterns in plant development. Am. J. Bot. 74:581-594   DOI   ScienceOn
17 Satina, S., Blakeslee, A. F. and Avery, A. G. 1940. Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot. 27: 895-905   DOI   ScienceOn
18 Kim, J. Y., Yuan, Z. and Jackson, D. 2003. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130:4351-4362   DOI   ScienceOn
19 Lucas, W. J., Bouche-Pillon, S., Jackson, D. P., Nguyen, L., Baker, L., Ding, B. and Hake, S. 1995. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980-1983   DOI   PUBMED   ScienceOn
20 Lucas, W. J., Ding, B. and C. Van der Schoot. 1993. Plasmodesmata and the supracellular nature of plants. New Phytol. 125:435-476   DOI   ScienceOn
21 Sinha, N. 1999. Leaf Development in Angiosperms. Annu Rev Plant Physiol. Plant Mol. Biol. 50:419-446   DOI   PUBMED   ScienceOn
22 Trotochaud, A. E., Hao, T., Wu, G., Yang, Z. and Clark, S. E. 1999. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11:393- 406   DOI   ScienceOn
23 Prochiantz, A. and Joliot, A. 2003. Can transcription factors function as cell-cell signalling molecules? Nat. Rev. Mol. Cell Biol. 4: 814-819   DOI   ScienceOn
24 Kim, J. Y., Yuan, Z., Cilia, M., Khalfan-Jagani, Z. and Jackson, D. 2002. Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc. Natl. Acad. Sci. USA 99:4103-4108
25 Reichel, C., Mas, P. and Beachy, R. N. 1999. The role of the ER and cytoskeleton in plant viral trafficking. Trends Plant Sci. 4: 458-462   DOI   ScienceOn
26 Long, J. A., Moan, E. I., Medford, J. I. and Barton, M. K. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66-69   DOI   ScienceOn
27 Dawe, R. K. and Freeling, M. 1991. Cell lineage and its consequences in higher plants. Plant J. 1:3-8   DOI   ScienceOn
28 Maizel, A., Tassetto, M., Filhol, O., Cochet, C., Prochiantz, A. and Joliot, A. 2002. Engrailed homeoprotein secretion is a regulated process. Development 129:3545-3553
29 Xoconostle-Cazares, B., Xiang, Y., Ruiz-Medrano, R., Wang, H. L., Monzer, J., Yoo, B. C., McFarland, K. C., Franceschi, V. R. and Lucas, W. J. 1999. Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94-98   DOI   PUBMED   ScienceOn