• Title/Summary/Keyword: autonomous mobile robots

Search Result 238, Processing Time 0.035 seconds

Intelligent Motion and Autonomous Maneuvering of Mobile Robots using Hybrid System (하이브리드 시스템을 이용한 이동로봇의 지능적 동작과 자율주행)

  • 이용미;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.152-152
    • /
    • 2000
  • In this paper, we propose a new approach to intelligent motion and autonomous maneuvering of mobile robots using hybrid system. In high Level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot as a low vevel are specified in the abstracted motions, The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments.

  • PDF

Algorithm for Autonomous Wall-Following of Wheeled Mobile Robots Using Reference Motion Synthesis and Generation of Hybrid System (하이브리드 시스템의 기준동작 구성과 생성에 의한 차륜형 이동로봇의 자율 벽면-주행 알고리즘)

  • Lim, Mee-Seub;Im, Jun-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.586-593
    • /
    • 2000
  • In this paper we propose a new approach to the autonomous wall-following of wheeled mobile robots using hybrid system reference motion synthesis and generation. The hybrid system approach is in-troduced to the motion control of nonholonomic mobile robots for the indoor navigation problems. In the dis-crete event system the discrete states are defined by the user-defined constraints and the reference mo-tion commands are specified in the abstracted motions. The hybrid control system applied for the non-holonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoid-ance for the indoor navigation problem. Simulation results show that hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

A MULTIPLE AUTONOMOUS ROBOTS SYSTEM -HARDWARE AND COMMUNICATION

  • Johari, W.A.;Nohira, M.;Yamauchi, Y.;Ishikawa, S.;Kato, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.485-490
    • /
    • 1992
  • This paper describes a hardware structure and a communication system of a multiple autonomous robots system. Many studies have been devoted to the development of a single autonomous robot. It is, however, also necessary to investigate decentralized multiple autonomous robots system in order to make wider use of such robots. We have been studying a multiple autonomous robots system employing two mobile robots. In this paper, problems are overviewed on the developed multiple autonomous robots system from the viewpoint of hardware and communication, and an improved system is presented, which employs a new control strategy of a mobile robot and realizes reliable data communication between host computers.

  • PDF

Generation of Fuzzy Rules for Cooperative Behavior of Autonomous Mobile Robots

  • Kim, Jang-Hyun;Kong, Seong-Gon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.164-169
    • /
    • 1998
  • Complex "lifelike" behaviors are composed of local interactions of individuals under fundamental rules of artificial life. In this paper, fundamental rules for cooperative group behaviors, "flocking" and "arrangement", of multiple autonomous mobile robots are represented by a small number of fuzzy rules. Fuzzy rules in Sugeno type and their related paramenters are automatically generated from clustering input-output data obtained from the algorithms the group behaviors. Simulations demonstrate the fuzzy rules successfully realize group intelligence of mobile robots.

  • PDF

An Artificial Life Model Based on Neural Networks for Navigation of Multiple Autonomous Mobile Robots in the Dynamic Environment (동적 환경에서 자율 이동 로봇군의 이동을 위한 신경 회로망 기반 인공 생명 모델)

  • Min, Seok-Ki;Kang, Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.180-188
    • /
    • 1999
  • The objective of this paper is, based upon the principles of artificial life, to induce emergent behaviors of multiple autonomous mobile robots which complex global intelligence form from simple local interactions. Here, we propose an architecture of neural network learning with reinforcement signals which perceives the neighborhood information and decides the direction and the velocity of movement as mobile robots navigate in a group. As the results of the simulations, the optimum weight is obtained in real time, which not only prevent the collisions between agents and obstacles in the dynamic environment, but also have the mobile robots move and keep in various patterns.

  • PDF

Cooperative behavior and control of autonomous mobile robots using genetic programming (유전 프로그래밍에 의한 자율이동로봇군의 협조행동 및 제어)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1177-1180
    • /
    • 1996
  • In this paper, we propose an algorithm that realizes cooperative behavior by construction of autonomous mobile robot system. Each robot is able to sense other robots and obstacles, and it has the rule of behavior to achieve the goal of the system. In this paper, to improve performance of the whole system, we use Genetic Programming based on Natural Selection. Genetic Programming's chromosome is a program of tree structure and it's major operators are crossover and mutation. We verify the effectiveness of the proposed scheme from the several examples.

  • PDF

Autonomous Mobile Robot Navigation using Artificial Immune Networks and Fuzzy Systems (인공 면역망과 퍼지 시스템을 이용한 자율이동로봇 주행)

  • Kim, Yang-Hyeon;Lee, Dong-Je;Lee, Min-Jung;Choe, Yeong-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.402-412
    • /
    • 2002
  • The navigation algorithms enable autonomous mobile robots to reach given target points without collision against obstacles. To achieve safe navigations in unknown environments, this paper presents an effective navigation algorithm for the autonomous mobile robots with ultrasonic sensors. The proposed navigation algorithm consists of an obstacle-avoidance behavior, a target-reaching behavior and a fuzzy-based decision maker. In the obstacle-avoidance behavior and the target-reaching behavior, artificial immune networks are used to select a proper steering angle, make the autonomous mobile robot avoid obstacles and approach a given target point. The fuzzy-based decision maker combines the steering angles from the target-reaching behavior and the obstacle-avoidance behavior in order to steer the autonomous mobile robot appropriately. Simulational and experimental results show that the proposed navigation algorithm is very effective in unknown environments.

Dynamic Path Planning for Autonomous Mobile Robots (자율이동로봇을 위한 동적 경로 계획 방법)

  • Yoon, Hee-Sang;You, Jin-Oh;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.392-398
    • /
    • 2008
  • We propose a new path planning method for autonomous mobile robots. To maximize the utility of mobile robots, the collision-free shortest path should be generated by on-line computation. In this paper, we develop an effective and practical method to generate a good solution by lower computation time. The initial path is obtained from skeleton graph by Dijkstra's algorithm. Then the path is improved by changing the graph and path dynamically. We apply the dynamic programming algorithm into the stage of improvement. Simulation results are presented to verify the performance of the proposed method.

Experimental research on the autonomous mobile robotics

  • Yuta, Shin'ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.17-17
    • /
    • 1996
  • An experimental research is a useful approach for realizing autonomous mobile robots to work in real environment. We are developing an autonomous mobile robot platform named "Yamabico" as a tool for experimental real world robotics research. The architecture of Yamabico is based on the concept of centralized decision making and functionally modularization. Yamabico robot has two level structure with behavior and function levels, and its hardware and software are functionally distributed for providing incremental development and good maintenancibility. We are using many Yamabico robots in our laboratory to realize the robust navigation technology for autonomous robots. The methodology for experimental and task-oriented approach of mobile robotics will be presented. And some experimental results of real world navigation in indoor and outdoor environment will be shown. be shown.

  • PDF