• Title/Summary/Keyword: autonomous UAV

Search Result 102, Processing Time 0.023 seconds

Dynamic Model and P-PD Control based Flight Performance Evaluation for Hexa-Rotor Type UAV (헥사로터형 무인기의 모델링과 P-PD기반 비행성능평가)

  • Jin, Taeseok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1074-1080
    • /
    • 2015
  • In the last decades, the increasing interest in unmanned aerial vehicle(UAV) for military, surveillance, and rescue applications made necessary the development of flight control theory and body structure more and more efficient and fast. In this paper, we describe the design and performance of a prototype hexarotor UAV platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, dynamic modeling and simulation in the hexarotor helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(ARM-cortex) board. The P-PD control algorithm was used to control the hexarotor. We used the Matlab software to help us to tune the P-PD control parameters for quick response and minimizing the fluctuation. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

Generating an Autonomous Landing Testbed of Simulated UAV applied by GA (GA를 적용한 모의 UAV의 자율착륙 테스트베드 구축)

  • Han, Changhee
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.93-98
    • /
    • 2019
  • In case of unmanned aerial vehicles used in modern society, there has been a problem where a human operator should be still needed to control the UAV because of a lower level of autonomy. In this paper, genetic algorithm is selected as a methodology for the autonomy accomplishment and then we verify a possibility of UAV autonomy by applying the GA. The landing is one of the important classical tasks on aerial vehicle and the lunar Landing is one of the most historical events. Autonomy possibility of computer-simulated UAV is verified by landing autonomy method of a falling body equipped with a propulsion system similar to the lunar Lander. When applying the GA, the genom is encoded only with 4 actions (left-turn, right-turn, thrust, and free-fall) and applied onto the falling body, Then we applied the major operations of GA and achieved a success experiment. A major contribution is to construct a simulated UAV where an autonomy of UAV can be accomplished while minimizing the sensor dependency. Also we implemented a test-bed where the possibility of autonomy accomplishment by applying the GA can be verified.

Design and Flight Test of Autonomous Landing Approach Algorithm for UAV (무인 항공기의 자동 착륙 접근 알고리즘 설계 및 비행시험)

  • Jeong, Minjeong;Ryu, Han-Seok;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.458-464
    • /
    • 2013
  • This paper presents an algorithm for autonomous landing approach of a unmanned aerial vehicle. The main purpose of the autonomous landing approach in this study is to help a safe landing at night. From any initial position of the aircraft when this function is engaged, a flight path command is generated from the initial position. The shortest combination of an initial circular arc, a straight line segment, and a final circular arc is chosen for the flight path that will lead the aircraft to one end of runway for a landing. The algorithm is initially validated through numerous simulations with various initial conditions of aircraft. Then it is successfully validated through a number of flight tests.

Autolanding Mission Planning of the IT Convergence Hoverable UAV (IT 융합 회전익 무인항공기의 자동 착륙 임무수행)

  • Jung, Sunghun;Kim, Hyunsu
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.6
    • /
    • pp.9-16
    • /
    • 2017
  • Researchers are now faced with a limited flight time of the hoverable UAV due to the sluggish technological advances of the Li-Po energy density and try to find a bypassing solution for the fully autonomous hoverable UAV mission planning. Although there are several candidate solutions, automated wireless charging is the most likely and realistic candidate and we are focusing on the autolanding strategy of the hoverable UAV in this paper since it is the main technology of it. We developed a hoverable UAV flight simulator including Li-Po battery pack simulator using MATLAB/Simulink and UAV flight and battery states are analyzed. The maximum motor power measured as 1,647 W occurs during the takeoff and cell voltage decreases down to 3.39 V during the procedure. It proves that the two Li-Po battery packs having 22 Ah and connected in series forming 12S1P are appropriate for the autolanding mission planning.

Implementation of Educational UAV with Automatic Navigation Flight

  • Park, Myeong-Chul;Hur, Hwa-ra
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.29-35
    • /
    • 2019
  • This paper proposes a UAV equipped with an automatic control system for educational purposes such as navigation flight or autonomous flight. The proposed UAV is capable of automatic navigation flight and it is possible to control more precisely and delicately than existing UAV which is directly controlled. And it has the advantage that it is possible to fly in a place out of sight. In addition, the user may arbitrarily change the route or route information to use it as an educational purpose for achieving the special purpose. It also allows you to check flight status by shooting a video during flight. For this purpose, it is designed to check the image in real time using 5.8GHz video transmitter and receiver. The flight information is recorded separately and used as data to judge the normal flight after the flight. The result of the paper can be flighted along the coordinates specified using GPS information. Since it can receive real-time video, it is expected to be used for various education purposes such as reconnaissance of polluted area, achievement of special purpose, and so on.

Autonomous landing of drones using deep learning GPS-denied environments (GPS 음영지역에서 딥러닝을 활용한 드론 자율 착륙)

  • Chae-Hui Park;Sung-Mahn Ahn
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.15-18
    • /
    • 2023
  • UAV는 군사용을 처음 시작으로 근래에 취미용 드론의 급격한 성장과 더불어 최근 기후변화, 교통혼잡, 범죄 예방 등 여러 사회 문제 해결을 위한 드론의 필요성이 증가함에 따라 건설, 교통, 농업, 에너지, 엔터테인먼트 등 다양한 산업과 여러 사회 서비스로 그 필요성이 확대되고 있다. 본 연구는 이러한 사회적 흐름에 따라 인공지능 기술을 통한 드론의 활용성을 확대하고 GPS 수신이 안 되는 환경에서 딥러닝 객체 탐지 모델을 활용한 자율 착륙을 연구를 목표로 한다. GPS 신호는 실내와 같은 환경 혹은 지하, 교량 아래, 산속 등과 같은 곳에서는 수신이 어렵다. 이를 극복하고자 GPS 신호수신이 어려운 지역에서 GPS 수신기를 통해 받는 위치 정보 대신 드론에 장착된 카메라를 통해 전달받는 영상에서 착륙할 지점을 인식하고 카메라를 통해 받는 영상 정보만 이용하여 목표지점으로 하강하는 방식으로 자율 착륙을 유도한다. 딥러닝 중 경량화 모델을 활용하여 소형 드론에서 실시간으로 착륙 지점을 감지하기 위해 최적화 과정을 진행해 실시간 자율 착륙이 가능하게 하였다. 본 연구를 통해 드론의 착륙에 있어 GPS 수신기와 사람의 조종에 대한 의존도를 낮출 수 있을 것으로 기대한다.

  • PDF

Autonomous Aero-Robot and Disaster Response

  • Inoue, Koichi;Nakanishi, Hiroaki
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.3-16
    • /
    • 2003
  • After a not-widely-known fact is revealed that Japan is a leading country in production and use of industrial unmanned helicopters, a kind of UAV. The voice command system and the autonomous flight control system with a variety of control algorithms including neural network, robust and adaptive control that have been developed in collaboration between Kyoto University and Yamaha Motor Co., and funded by the Ministry of Education and Science of Japan are described in some detail. Both already-proven and promising future applications of the autonomous unmanned helicopters are given.

  • PDF

Robustness for Scalable Autonomous UAV Operations

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2017
  • Automated mission planning for unmanned aerial vehicles (UAVs) is difficult because of the propagation of several sources of error into the solution, as for any large scale autonomous system. To ensure reliable system performance, we quantify all sources of error and their propagation through a mission planner for operation of UAVs in an obstacle rich environment we developed in prior work. In this sequel to that work, we show that the mission planner developed before can be made robust to errors arising from the mapping, sensing, actuation, and environmental disturbances through creating systematic buffers around obstacles using the calculations of uncertainty propagation. This robustness makes the mission planner truly autonomous and scalable to many UAVs without human intervention. We illustrate with simulation results for trajectory generation of multiple UAVs in a surveillance problem in an urban environment while optimizing for either maximal flight time or minimal fuel consumption. Our solution methods are suitable for any well-mapped region, and the final collision free paths are obtained through offline sub-optimal solution of an mTSP (multiple traveling salesman problem).

Backward Path Following Under a Strong Headwind for UAV (강한 맞바람이 발생 했을 때 무인기의 후진경로추종에 관한 연구)

  • Byeon, Gwang-Yeol;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.376-382
    • /
    • 2014
  • This paper presents a method to enable a UAV in autonomous flight along a desired path to follow it backwards when a strong headwind prevents the vehicle from proceeding forward. The main purpose of the reverse path following in this study is to return to a mission quickly when the wind becomes weaker. When the nonlinear path following guidance law is used, there are two reference points available in the path following. One of the two points is selected considering a flight direction for calculating a straight-line distance(L) from the vehicle to the point for the path following. An initial heading angle with respect to the wind direction determines whether the reverse path following is feasible or not at the time of the wind is generated. The result of the proposed method based on kinematic model in this study is verified through simulations implemented in Matlab.

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.