• Title/Summary/Keyword: automotive seat

Search Result 242, Processing Time 0.017 seconds

Technical Trends of Rare Metal Recycling in the Next Generation Automobile (차세대 자동차용 희소금속 리싸이클링 기술동향)

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.3-16
    • /
    • 2014
  • Car exhaust $CO_2$ gas reduction and fuel efficiency of the car lighter for the current era is a big challenge. The developments of high-performance Nd magnets, Li-ion secondary battery and exhaust gas purification performance of PGM catalysts used in the lightweight EV and HEV are activated. Country in order to improve the car lighter and function that use the resources of rare metals are ubiquitous imported from China because of export supply control, as soaring prices have unstable supply and demand. Compared to the emissions from the next-generation automotive recycling, waste scarce resources need to be. This study investigated the recycling technology analysis and development of the information technology, or delivered to the researchers by giving national car industry aims to contribute to the development. Findings, pulmonary high-performance motor vehicle emissions in the exhaust gas purification PGM Catalysts, Li-ion battery and Nd magnets recycling technology, such as pre- and post-processing techniques to classify technology, pre-urban mining technology mechanical separation by screening techniques under development, the study and post-processing technology has, pyro and hydro metallurgical smelting technology is established. Waste Recycling in terms of economic efficiency of mechanical components for the intensive study of screening techniques is needed.

Modularization of Automotive Product Architecture: Evidence from Passenger Car (자동차 아키텍처의 모듈화: 승용차 사례를 중심으로)

  • Kwak, Kiho
    • Journal of Technology Innovation
    • /
    • v.27 no.2
    • /
    • pp.37-71
    • /
    • 2019
  • How has the passenger car's architecture evolved? In the meantime, the discussions on the car architecture have been mixed, i.e., integral, modular, and the coexistence of two types. Therefore, in this study, we aim to develop two indices can measure the degree of modularization of passenger car and its all modules using global trade data. By applying the indices to the framework of architecture positioning that reflects the hierarchical structure of a product, we examined that the degree of modularization of the passenger car architecture has been enhanced. Meanwhile, the degree of modularization differs across the modules that make up the car. Specifically, we observed the higher degree of modularization in front-end, cockpit and seat modules. Whereas, we found that body module had a relatively low degree of modularization. In particular, we observed that the platform of passenger car has notably modularized due to carmakers' efforts to achieve model diversification and reduction of cost and period in new product development at the same time. Interestingly, we showed that three modules, i.e., engine, chassis (relatively less modularized), and transmission (relatively highly modularized), had a different level of modularization, even if they commonly make up the platform. We contribute to the suggestion for analytical approaches that examine the degree of modularization and its progress longitudinally. In addition, we propose the necessity of decomposition of a system into elements in a study of product architecture, considering the possibly distinctive progress of modularization across the elements.