• Title/Summary/Keyword: automotive buses

Search Result 26, Processing Time 0.025 seconds

Comparison of the Fuel Economy of Series and Parallel Hybrid Bus System Using Dynamic Programming (동적 계획법을 이용한 직렬형 및 병렬형 하이브리드 버스 시스템 연비 비교)

  • Jeong, Jongryeol;Lee, Daeheung;Shin, Changwoo;Jeong, Daebong;Min, Kyoungdoug;Cha, Suk Won;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.92-98
    • /
    • 2013
  • There are lots of studies about hybrid electric vehicles (HEVs) because of the global warming and energy problems. Series and parallel HEVs are the common types of many developing hybrid vehicle types. Series HEV uses engine only as the generator for the battery but parallel HEV utilizes engine for driving and generating of the vehicle. In this paper, backward simulations based on dynamic programming were conducted for the fuel economy analysis of two different types of hybrid transit buses depending on driving cycles. It is shown that there is a relation between the type of HEV and the characteristics of driving cycles. Regarding the aggressiveness, the series hybrid bus is more efficient than the parallel system on highly aggressive driving cycle. On the other hand, the parallel hybrid bus is more efficient than the series system on low aggressive driving cycle. Based on this results of the paper, it is expected to choose more efficient type of the hybrid buses according to the driving cycle.

On-Road Driving Performance Analysis of Diesel-Hybrid Bus in Daegu Metropolitan Area (대구지역 디젤하이브리드 버스의 실도로 주행 성능 분석)

  • Kim, Hyunjun;Chun, Bongsu;Han, Manbae;Han, Moonsik;Kim, Yongrae;Lee, Yonggyu;Choi, Kyonam;Jeong, Dongsoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.27-33
    • /
    • 2013
  • In this study we analyzed the on-road driving performance of two parallel-type diesel-hybrid buses which have been driven in Daegu metropolitan area. A real-time on-board data logger was facilitated to measure the vehicle information such as vehicle speed, idle stop, state of charge of battery, and engine operating conditions. These diesel-hybrid buses ran as a commuter at Daegu Exco area and Dalsung industrial complex. The driving pattern in Exco area comprised more frequent idle stop and relatively lower speed than at Dalsung area, where comprised no idle stop. Due to those different driving patterns, the fuel economy at Dalsung showed $3.7\;km/{\ell}$, which is about 8% higher than that of Exco. The main causes of this come from the higher portion of regenerative braking and higher speed which moves to the operating points of diesel engine with a lower fuel consumption.

Automotive Semiconductor Serial Interfaces with Transmission Error Detection Using Cyclic Redundancy Check (순환 중복 검사를 통해 전송 오류를 검출하는 차량용 반도체 직렬 인터페이스)

  • Choi, Ji-Woong;Im, Hyunchul;Yang, Seonghyun;Lee, Donghyeon;Lee, Myeongjin;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.437-444
    • /
    • 2022
  • This paper proposes a CRC error verification method for SPI and I2C buses of automotive semiconductors. In automotive semiconductors, when an error occurs in communication and an incorrect value is transmitted, fatal results may occur. Unlike LIN communication and CAN communication, in communication such as SPI and I2C, there is no frame for detecting an error, so some definitions of new standards are required. Therefore, in this paper, the CRC error detection mode is newly defined in the SPI and I2C communication protocols, and the verification is presented by designing it in hardware.

Development of a Numerical Algorithm for the Evaluation of Aerodynamic Driving Stability of a Vehicle (주행차량의 공기역학적 주행안전성 평가를 위한 알고리즘 개발연구)

  • Kim, Chul-Ho;Kim, Chang-Sun;Lee, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.265-272
    • /
    • 2016
  • The objective of vehicle aerodynamic design is on the fuel economy, reduction of the harmful emission, minimizing the vibration and noise and the driving stability of the vehicle. Especially for a sedan, the driving stability of the vehicle is the main concern of the aerodynamic design of the vehicle indeed. In this theoretical study, an evaluation algorithm of aerodynamic driving stability of a vehicle was made to estimate the dynamic stability of a vehicle at the given driving condition on a road. For the stability evaluation of a driving vehicle, CFD simulation was conducted to have the rolling, pitching and yawing moments of a model vehicle and compared the values of the moments to the resistance moments. From the case study, it is found that a model sedan running at 100 km/h in speed on a straight level road is stable under the side wind with 45 m/s in speed. But the different results may be obtained on the buses and trucks because those vehicles have the wide side area. From the case study of the model vehicle moving on 100 km/h speed with 15 m/s side wind is evaluated using the numerical algorithm drawn from the study, the value of yawing moment is $608.6N{\cdot}m$, rolling moment $-641N{\cdot}m$ and pitching moment $3.9N{\cdot}m$. These values are smaller than each value of rotational resistance moment the model vehicle has, and therefore, the model vehicle's driving stability is guaranteed when driving 100 km/h with 15 m/s side wind.

Performance and Transmission Efficiency Analysis of 2-Mode Hydro Mechanical Transmission (2-모드 기계유압식 무단변속기의 성능 및 전달효율해석)

  • Jung Gyuhong;Kim Hyoungeui;Kim Jongki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.90-98
    • /
    • 2005
  • HMT is a type of continuously variable transmission which has split power flow path characteristics with gear train and hydro static unit. The benefit of improved fuel economy and high power capacity enables it to be a promising application fur large vehicles. This paper presents the analysis results including velocity, static torque, transmission efficiency and dynamic model of the HMT that is developed for city buses. The speeds or gear shafts, the static clutch torque and split power ratio for each mode are detailed here. From the analysis of HMT transmission efficiency considering the power loss in meshed gear and hydraulic unit, we can conclude that minimization of hydraulic power is necessary for improved fuel economy design. Also, the dynamic simulation result for mode shift characteristics shows that little shift shock is observed because of the synchronized rotation speed in clutch.

An efficient LIN MCU design for In-Vehicle Networks

  • Yeon, Kyu-Bong;Chong, Jong-Wha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.451-458
    • /
    • 2013
  • This paper describes a design of LIN MCU using efficient memory accessing architecture which provides concurrent data and address fetch for faster communication. By using slew rate control it can reduce EMI emission while satisfying required communication specifications. To verify the efficiency of the LIN MCU, we developed a SoC and tested for several data packets. Measurements show that this LIN MCU improves network efficiency up to 17.19 % and response time up to 31.26 % for nominal cases. EMI radiation also can be reduced up to 10 dB.

Development of the All-Wheel-Steering Algorithm using Dynamic Analysis of the Bi-modal Vehicle (저상굴절차량의 주행해석을 이용한 전차륜 조향 알고리즘 개발)

  • Jeon, Yong-Ho;Park, Tae-Won;Lee, Soo-Ho;Kim, Duk-Gie;Moon, Kyung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.144-151
    • /
    • 2008
  • The bi-modal vehicle is composed of two car-bodies and three axles. Each axle of the vehicle has an independent suspension and all wheels are steerable. Since the bi-modal vehicle has longer wheelbase than most urban buses, the All-Wheel-Steering(AWS) system is adapted for to ensure safe driving and proper turning radius on a curved road. This paper proposes an AWS control algorithm for stable driving of bi-modal vehicle. Steering angles and directions of each axle of bi-modal vehicle changed according to the driving environment and steering modes. In the case that front and rear axles should be steered in opposite directions is a negative mode, and the other case that the axles should be steered in the same direction is a positive mode. For example, in the positive mode, front and real axles are steered in the same direction, while in the negative mode, they are steered in the opposite direction. A multibody model of the vehicle is used to verify the performance of the steering algorithm and simulation results of 2WS are compared with those of AWS under the same condition.

Applicability of Fuel Supply System for HCNG Engine (HCNG 엔진용 연료시스템의 적용성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi;Lee, Janghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.146-153
    • /
    • 2013
  • CNG buses has contributed to improve air quality in cities. But it is difficult to meet the next emission regulations such as EURO-VI without the help of additional post-processing device. Hydorgen has higher flame speed and lower combustion temperature that make it thermal efficiency increase with leaner operation. Using hydrogen natural gas blend (HCNG) fuel is promising technology which can reduce $NO_x$ and $CO_2$ emissions for a natural gas vehicle. However, fuel flow rate of HCNG should be increased since hydrogen's energy density per volume is much smaller than natural gas. In the present study, the characteristics of fuel supply system and its applicability were evaluated in a heavy duty natural gas engine. The results showed that the potential of fuel pressure regulator and fuel metering valve had enough capacity with HCNG. Employed mixer did not affect the distribution characteristics of mixture.

Improved High Efficiency Bidirectional Resonant Converter for V2G EV Charger (OBC) (V2G EV 충전기(OBC)를 위한 개선된 고효율 양방향 공진컨버터)

  • Oh, Jae-Sung;Kim, Min-Ji;Lee, Jun-Hwan;Woo, Jung-Won;Kim, Eun-Soo;Won, Jong-Seob
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.438-444
    • /
    • 2019
  • In this paper, bidirectional LLC resonant DC/DC converters with the primary auxiliary windings in transformers of resonant circuits are proposed. Although the resonant capacitors are used on both the primary and secondary sides, regardless of the direction of power flow, the main feature of the proposed converters exhibits high gain characteristics without any mutual coupling between the resonant capacitors. For one of the proposed converters, an investigation of the operating characteristics in each mode has been carried out. A prototype of a 3.3 kW bidirectional LLC resonant converter for interfacing 750 V DC buses has been built and tested to verify the validity and applicability of the proposed converter.

Evaluation of the Impact of Fuel Economy by Each of Driving Modes for Medium-Size Low-Floor Bus (중형저상버스의 개별주행모드에 따른 연료소비율 평가)

  • Jung, Jae-wook;Ro, Yun-sik;Ahn, Byong-kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.133-140
    • /
    • 2016
  • The Ministry of Land, Infrastructure and Transport has introduced low-floor buses, which are convenient for passengers getting on and off the bus and for the handicapped. The standard bus model is 11 m long and uses compressed natural gas (CNG). However, this model has drawbacks in narrow rural road conditions such as those in farming and fishing villages and mountainous areas, as well as difficulty in refueling since CNG facilities are not readily available. In this study, running resistance values were obtained by coasting performance tests on actual roads using a Tata Daewoo LF-40 model with three different weight conditions: curb vehicle weight (CVW), half vehicle weight (HVW), and gross vehicle weight (GVW).The test methods include WHVC, NIER-06, and constant-speed driving at 60 km/h. These tests were used to measure the fuel economy of vehicles other than the target vehicles to obtain the combined fuel economy. The energy efficiency was highest in the case of CVW. In the WHVC mode, the fuel consumption rates of HVW and GVW were typically 3.5% and 12% higher than that of CVW, respectively. In constant-speed driving, the fuel efficiency of HVW was higher than that of CVW. Further research is required to analyze the exhaust gas data.