• Title/Summary/Keyword: automobile muffler

Search Result 29, Processing Time 0.032 seconds

An Experimental Study on Annulus Muffler of Automobile (자동차용 환상형 소음기에 관한 실험적 연구)

  • Kim, Byoung-Sam;Song, Kyu-Keun;Sim, Sang-Cherl;Cheong, Byeong-Kuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.217-222
    • /
    • 2006
  • Internal combustion engine is the main source of environmental pollutants and therefore advanced technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, when the exhaust gas is released front the automotive muffler, exhaust noise has many bad influence on the surrounding environment. In order to reduce the exhaust noise, it is necessary that automotive muffler must be designed for best exhaust efficiency. The sound insulation room was installed for the analysis of an acoustics characteristics of the noise from automotive muffler, in this study. Exhaust gas noise, noise distribution characteristics, pressure and temperature of exhaust gas were investigated with the change of annulus temperature of air cooled annulus automotive muffler and cooled annulus automotive muffler. The following results were obtained with this study. From the frequency analysis of automotive muffler, high noise distribution was observed in the range $100{\sim}2000Hz$. It means that the noise in this range has an dominate influence for the overall noise. Noise reduction of automotive muffler was affected by the temperature of annulus. It is caused the result that the high temperature and pressure of exhaust gas are changed lower by the drop of annulus temperature. The tendencies of noise, the temperature and pressure of exhaust gas are similar to the performance curve of engine. Exhaust gas pressure is determined by the r.p.m. of engine and affected by the cooling performance of automotive muffler.

  • PDF

The influence of exhaust system on heat efficiency and fuel consumption of S.I engine (엔진운전조건에 따른 배기시스템의 압력분포특성에 관한 연구)

  • 김동현;박세종;손성만;박경석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1091-1096
    • /
    • 2004
  • It is necessary to consider the stability, economic environmental-friendly problems by the development of the road, supply of the automobile, environmental problem as designing the exhaust system. To reduce the noise and the vibration of the automobile. The need for stricter regulation limits emission and demand for lower fuel comsumption. According to motor vehicle company develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption for demand information of pressure fraction and heat characteristics. To be able to determine these factor for we experiment on each case of exhaust system unit. In this study, in order to establish the optimized conditions design factors which are taking many performance as the variable valve, it shows how the standard performance and the additional element of the exhaust system effects on the engine performance.

  • PDF

The Effects of the Combustion Characteristics on the Exhaust System Volume of the SI Engine in Idling (아이들링 시 배기시스템 용적이 SI 기관의 연소특성에 미치는 영향)

  • Noh, Hyung-Chul;Park, Kyoung-Suk;Son, Sung-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.186-192
    • /
    • 2007
  • We research into the exhaust system volume what proving the optimum exhaust performance and combustion characteristics. Many automobile manufactures have developed complex exhaust system for environment regulation and noise reduction. This complex exhaust system provides acoustics silencing and low frequency noise for customers demand. Recently, automobile exhaust system have made the Dual muffler concerning to the noise and vibration reduction. Also it bring the engine performance down by decreasing the back pressure and temperature in the exhaust system. The experiments are carried out different volume of exhaust system. In order to establish the optimized conditions design factors which are taking exhaust system volume, it show how the exhaust performance influence on the engine performance in idling.

A Study on the combustion characteristcs for backpressure of exhaust system in SI engine (배기(排氣)시스템의 배압(背壓)과 연소특성(燃燒特性)에 관한 연구)

  • Park, Dai-Un;Park, Kyoung-Suk;Park, Se-Jong;Son, Sung-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.206-212
    • /
    • 2004
  • It is necessary to consider the stability, economic environmental-friendly problems by the development of the road, supply of the automobile, environmental problem as designing the exhaust system. To reduce the noise and the vibration of the automobile, it is needed to consider the pulsation noise, air current noise, vibration of air pipe which generate the intake and exhaust noise of the automobile. Moreover, the discharge sounds, intake sound, radiation sound, transmitted sound are occurred. To reduce this influence, the variable valve is needed and to control these factors, path transformation muffler and active type muffler are needed. While engine efficiency could be reduced with this transformationand resistance by the pressure, thermal property. In this study, how to design exhaust systems yielding higher condversion efficiency, lower backpressure and optimize the performance. this study is recommended for exhaust system and designers and engineers involved in SI engine exhaust system and it will furnish information for you to design more efficient.

  • PDF

Noise Analysis of Intake System by Hybrid Method (하이브리드 방법을 이용한 배기계 소음 해석)

  • 이장명;한성수;임학종
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.310-316
    • /
    • 1999
  • 4-Pole parameter method based on an acoustic theory is very popular for the analysis of the acoustic behavior of the car exhaust system. However, this method is applicable only for the simple shape of acoustic elements of the muffler. Numerical methods such as FEM(Finite Element Method) or BEM(Boundary Element Method) can also provide acceptable results for the acoustic analysis of the car exhaust system. Even though these numerical methods have benefits for the analysis of complicated shape of acoustic elements of the muffler, time consuming is another problem during modeling and numerical calculation. Combining benefits of both methods, the new code called the hybrid method for car exhaust system is introduced. And the developed code is utilized for calculation of the transmission loss of a main muffler of an automobile comparing with the experimental results.

  • PDF

A study on the evaluation of control performance of active muffler for exhaust noise control (배기소음 제어용 능동형 소음기의 제어 성능평가에 관한 연구)

  • Kim, Heung-seob;Shon, Dong-Gu;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.251-257
    • /
    • 1998
  • Active mufflers have been mainly applied in the large industrial engine due to considerable expense for implementation, but a necessity of development has been increased by the tightened regulation of exhaust noise and the request of high power. In this study, the active muffler prototype for installing in an automobile is designed and constructed. The active muffler is designed so that the primary noise and the control sound are propagated as a plane wave in the outlet. Therefore, the error microphone could be placed outside the high temperature centers of the tail pipe, and the noise radiating to the outside could be reduced in the whole areas around the outlet. For evaluating the control performance of the prototype, the control experiments of band-pass filtered random signal and the modulation of sinusoidal signal which are generated from the primary noise speaker as practical exhaust sound level are implemented. And to investigate the radiation pattern from the outlet of tail pipe and the noise reduction level of points placed adjacent to the outlet, the sound level of adjacent points of thirty is measured.

Optimization of arc brazing process parameters for exhaust system parts using box-behnken design of experiment

  • Kim, Yong;Park, Pyeong-Won;Park, Ki-Young;Ryu, Jin-Chul
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.23-31
    • /
    • 2015
  • Stainless steel is used in automobile muffler and exhaust systems. However, in comparison with other steels it has a high thermal expansion rate and low thermal conductivity, and undergoes excessive thermal deformation after welding. To address this problem, we evaluated the use of arc brazing in place of welding for the processing of an exhaust system, and investigated the parameters that affect the joint characteristics. Muffler parts STS439 and hot-dipped Al coated steel were used as test specimens, and CuAl brazing wire was used as the filler metal for the cold metal transfer (CMT) welding machine, which is a low heat input arc welder. In addition, a Box-Behnken design of experiment was used, which is a response surface methodology. The main process parameters (current, speed, and torch angle) were used to determine the appropriate welding quality and the mechanical properties of the brazing part was evaluated at the optimal welding condition. The optimal processing condition for arc brazing was 135A current, 51cm/min speed and $74^{\circ}$ torch angle. The process was applied to an actual exhaust system muffler and the prototype was validated by thermal fatigue, thermal shock, and endurance limit tests.

Study of the Weak Shock Wave Propagating inside an Engine Exhaust Muffler (엔진 배기 소음기내를 전파하는 약한 충격파에 관한 연구)

  • 이동훈;권용훈;김희동
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.510-519
    • /
    • 2002
  • The present study addresses a computational work of the weak shock wave propagating inside an automobile exhaust muffler. Several different types of the silencer systems are employed to investigate the magnitude of the shock wave during propagating through them. The Initial shock wave Mach number $M_s$ is varied between 1.01 and 1.30, and a normal shock wave is given at the inlet of the silencer systems. The second order total variation diminishing scheme Is employed to solve the two dimensional, compressible, unsteady Euler equations. The present computational results are compared with the previous experimental ones available. The present computations predict the experimental results with a quite good accuracy. Of the four silencer systems applied. the most desirable silencer system to reduce the peak pressure at the exalt of the exhaust pipe is discussed from the Point of view of the engineering design of the silencer systems.

An Experimental Study on the Radiated Noise induced by Pressure Pulsation through Muffler in Engine Exhaust System (기관 배기형의 머플러에서 압력맥동에 기대된 방사음에 관한 실험적 연구)

  • 조경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.635-642
    • /
    • 1998
  • In automobile exhaust system. Internal pressure pulsation and shell vibration greatly affect the surface sound radiation. This noise is emitted from the muffler outer shell due to the pulsation of the exhaust gas pressure. This paper describes an analytical study of these characteristics as influenced by exhaust system structure. An exhaust simulator was used for generating the pressure pulsation. The relationship between shell vibration and radiated noise was used for generating the pressure pulsation. The relationship between shell vibration and radiated noise was identified by finding FRF.

  • PDF

A Study on the Evaluation of Engine Motion for the Design in Automobile Exhaust System (자동차 배기계 설계를 위한 엔진운동변위 산출에 관한 연구)

  • 이완익;박경진;이권희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.120-130
    • /
    • 1993
  • In the analysis of automobile exhaust system, the exciting forces from the engine determine the dynamic behavior of the system and the dynamic characteristics influence the riding quality. Therefore, the identification of the force in numeric value is quite important for the vibrational reduction. However, the value is difficult to obtain by experiments due to harsh conditions around the engine. In this research, an optimization technology is adopted to evaluate the exciting forces. An experimental method is conducted for the verification of the finite element modeling. Displacements on the end of the exhaust system are measured under the idling environment. cost function is set up to minimize the differences between the displacements of the numerical simulation and the experiment. Design variables are the components of the exciting forces. That is, optimization is utilized to estimate the forces with existing data. Excellent estimations have been calculated efficiently and the information is used again for the forced vibration of the exhaust system.

  • PDF