• 제목/요약/키워드: automation of structural analysis

검색결과 105건 처리시간 0.023초

Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures

  • Zhang, Shun-Qi;Chen, Min;Zhao, Guo-Zhong;Wang, Zhan-Xi;Schmidt, Rudiger;Qin, Xian-Sheng
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.633-641
    • /
    • 2017
  • The complexity of macro-fiber composite (MFC) materials increasing the difficulty in simulation and analysis of MFC integrated structures. To give an accurate prediction of MFC bonded smart structures for the simulation of shape and vibration control, the paper develops a linear electro-mechanically coupled static and dynamic finite element (FE) models based on the first-order shear deformation (FOSD) hypothesis. Two different types of MFCs are modeled and analyzed, namely MFC-d31 and MFC-d33, in which the former one is dominated by the $d_{31}$ effect, while the latter one by the $d_{33}$ effect. The present model is first applied to an MFC-d33 bonded composite plate, and then is used to analyze both active shape and vibration control for MFC-d31/-d33 bonded plate with various piezoelectric fiber orientations.

선체 구조설계로부터 구조해석 모델 생성에 필요한 데이타의 추출과 정형화에 관한 연구 (A Study on the Data Extraction and Formalization for the Generation of Structural Analysis Model from Ship Design Data)

  • 이재환;김용대
    • 대한조선학회논문집
    • /
    • 제30권3호
    • /
    • pp.90-99
    • /
    • 1993
  • 선체 구조해석에서 유한요소의 활용에 따라 3차원적인 모델이 필요하게 되었으나 선체구조는 매우 복잡하고 주문생산에 따른 선체규격의 상이함에 의해 유한요소 모델링에 어려움이 많다고 할 수 있다. 유한요소 소프트웨어에서 제공하는 pre-processor나 geometric modeler를 활용하여 모델링을 짧은 시간내 편리하게 하기 위해서는 DB에 저장된 설계 데이타로 부터 요소형성에 긴요한 데이타들을 추출하여 사용할 필요가 있게 된다. 본문에는 engineering database의 부분적인 구현 예로서, 설계-해석 자동화의 한 분야인 유한요소 모델링에 필요한 내용들이 설계 데이터로 부터 추출되어 관계형 데이타 테이블로 정형화되는 과정이 개념적으로 나타나 있다.

  • PDF

통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구 (A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE)

  • 윤종민;원준호;김종수;최주호
    • 한국CDE학회논문집
    • /
    • 제11권2호
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

개폐식 대공간 구조물의 파라메트릭 설계와 풍하중 적용 (Parametric Design and Wind Load Application for Retractable Large Spatial Structures)

  • 김시욱;정보라;김치경;이시은
    • 한국전산구조공학회논문집
    • /
    • 제32권6호
    • /
    • pp.341-348
    • /
    • 2019
  • 본 연구의 목적은 개폐식 대공간 구조물의 풍하중 산정 및 구조해석의 과정을 자동으로 수행하는 컴포넌트를 개발하는 것이다. 설계한 파라메트릭 모델링을 StrAuto를 통해 구조해석 자동화단계를 거쳐 구조해석용 모델로 변환하는 과정을 실시간으로 연동하여 구조해석 결과를 자동으로 도출하는 과정으로부터 본 연구에서는 추가로 구조물의 풍하중을 형상에 따라 상세히 할당하는 기능을 개발하였다. 이와 같은 과정을 통해 풍하중에 대한 최적화를 수행하여, 기존 설계된 구조의 물량을 줄이고, 구조적 안정성은 유지하는 방향으로 결론을 도출하였다. 추후에는 본 예제 모델을 통해 진동제어 최적화를 위한 제진장치 설치위치의 자동탐색이 가능하게 되는 연구를 진행할 계획이다.

근사최적화 기법을 이용한 RC 빌딩의 구조 최적설계 (Design Optimization of a RC Building Structure using an Approximate Optimization Technique)

  • 박창현;안희재;최동훈;정철규
    • 한국전산구조공학회논문집
    • /
    • 제24권2호
    • /
    • pp.223-233
    • /
    • 2011
  • 본 논문에서는 수직하중, 풍하중 및 지진하중에 의해 발생하는 변위 관련 구속조건을 만족하면서 RC(Reinforced Concrete) 빌딩 구조의 부피를 최소화하기 위한 설계문제를 정식화하였다. 구조해석 절차 자동화의 어려움으로 인해 실험 계획법과 근사화기법, 최적화기법을 이용한 근사모델기반 최적설계를 수행하였다. 특히, 만족할 만한 설계 결과를 얻을 때까지 설계변수의 범위와 구속조건의 허용값을 조정하는 단계적 최적설계 방법을 제안하였다. 제안된 단계적 최적설계 방법을 통해 주어진 구속조건을 모두 만족하면서 RC 빌딩 구조의 부피를 초기 설계 대비 53.3% 감소시키는 결과를 얻음으로 써 본 논문에서 보인 단계적 최적설계 방법의 타당성을 보였다.

캠퍼스 네트워크의 구성 및 성능분석 자동화 방법론 (Automated Methodology for Campus Network Design and Performance Analysis)

  • 지승도
    • 한국시뮬레이션학회논문지
    • /
    • 제7권2호
    • /
    • pp.1-16
    • /
    • 1998
  • This paper presents an automated methodology for campus network design and performance analysis using the rule-based SES and DEVS modeling & simulation techniques. Proposed methodology for structural design and performance analysis can be utilized not only in the early stage of network design for selecting configurable candidate from all possible design alternatives, but also in simulation verification for generating performance data. Our approach supercedes conventional methodologies in that, first, it can support the configuration automation by utilizing the knowledge of design expert ; second, it can provide the simulation-based performance evaluation ; third, it is established on the basis of the well-formalized framework so that it can support a hierarchical and modular system design. Several simulation tests performed on a campus network example will illustrate our technique.

  • PDF

Finite element analysis of helmeted oblique impacts and head injury evaluation with a commercial road helmet

  • Fernandes, Fabio A.O.;de Sousa, R.J. Alves
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.661-679
    • /
    • 2013
  • In this work, the safety performance of a commercial motorcycle helmet already placed on the market is assessed. The assessed motorcycle helmet is currently homologated by several relevant motorcycle standards. Impacts including translational and rotational motions are accurately simulated through a finite element numerical framework. The developed model was validated against experimental results: firstly, a validation concerning the constitutive model for the expanded polystyrene, the material responsible for energy absorption during impact; secondly, a validation regarding the acceleration measured at the headform's centre of gravity during the linear impacts defined in the ECE R22.05 standard. Both were successfully validated. After model validation, an oblique impact was simulated and the results were compared against head injury thresholds in order to predict the resultant head injuries. From this comparison, it was concluded that brain injuries such as concussion and diffuse axonal injury may occur even with a helmet certified by the majority of the motorcycle helmet standards. Unfortunately, these standards currently do not contemplate rotational components of acceleration. Conclusion points out to a strong recommendation on the necessity of including rotational motion in forthcoming motorcycle helmet standards and improving the current test procedures and head injury criteria used by the standards, to improve the safety between the motorcyclists.

리니어모터 시스템 구조설계에 관한 연구 (A Study on the Structural Design of Linear Motor System)

  • 은인웅;이춘만;황영국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.1059-1063
    • /
    • 2005
  • Development of a feed drive-system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, due to great power loss and magnetic attraction of the linear motors heating and deflection problems occur. Therefore, it is necessary to design strong structure, cooling device with high efficiency and light weight construction in designing stage of linear motors. This paper presents an investigation into a structural design of linear motor system. In this research, a new concept of moving table with high stiffness and of cooling plate is also introduced. Structure analyses are performed by using a commercial code ANSYS in order to evaluate the design safety.

  • PDF

고체 추진기관 구조체 설계 프로그램 개발을 위한 설계 부품 자료 구조 (Data Structure for the Design Program of Solid Rocket Motors)

  • 이강수;김원훈;이방업
    • 한국CDE학회논문집
    • /
    • 제17권5호
    • /
    • pp.364-374
    • /
    • 2012
  • In this paper, we proposed a data structure to represent structural components of solid rocket motors (SRM) in an automated design program. To propose the data structure, we searched the necessary functions for the automated design program should have. In order to design the structural components of solid rocket motors sufficiently with a design program, it should have the functions to represent the shapes of the components, the drawing and analysis models, the design variables, various product structures, interferences, characteristic properties, design equations, and tightening sets. By modifying the data structure of an element object that is a general purpose data structure to represent a general component of a product, a new data structure was proposed to satisfy all the necessary functions with optimum. Finally, a design program for the structural components of solid rocket motors was developed successfully with the proposed data structure.

Time-varying modal parameters identification of large flexible spacecraft using a recursive algorithm

  • Ni, Zhiyu;Wu, Zhigang;Wu, Shunan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.184-194
    • /
    • 2016
  • In existing identification methods for on-orbit spacecraft, such as eigensystem realization algorithm (ERA) and subspace method identification (SMI), singular value decomposition (SVD) is used frequently to estimate the modal parameters. However, these identification methods are often used to process the linear time-invariant system, and there is a lower computation efficiency using the SVD when the system order of spacecraft is high. In this study, to improve the computational efficiency in identifying time-varying modal parameters of large spacecraft, a faster recursive algorithm called fast approximated power iteration (FAPI) is employed. This approach avoids the SVD and can be provided as an alternative spacecraft identification method, and the latest modal parameters obtained can be applied for updating the controller parameters timely (e.g. the self-adaptive control problem). In numerical simulations, two large flexible spacecraft models, the Engineering Test Satellite-VIII (ETS-VIII) and Soil Moisture Active/Passive (SMAP) satellite, are established. The identification results show that this recursive algorithm can obtain the time-varying modal parameters, and the computation time is reduced significantly.