• Title/Summary/Keyword: automatic vehicle location system

Search Result 41, Processing Time 0.028 seconds

Multi-Reference Inverted DGPS System for Automatic Vehicle Location System (차량위치추적 시스템을 위한 다중 기준국 Inverted DGPS 시스템)

  • 홍진석;한승재;지규인;이영재;이장규;최홍석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.79-87
    • /
    • 1999
  • For its simplicity and cost effectiveness in implementation, the Inverted DGPS is well suited for some specific applications like automatic vehicle location systems, where the monitoring station needs accurate position of the vehicles in the street. In the Inverted DGPS, the user sends its GPS position and associated satellite informations to the reference station, and the corrections are made at the reference station to get differentially corrected user position. A fundamental requirement in IDGPS is that the user and the reference station must use the same satellites when the corrections are made. But in practice, it is not often satisfied. Inverted DGPS is also suffered from performance degradation as the baseline become large like DGPS. IDGPS system using multi-reference station can resolve this problem. In this paper a simple multi-reference IDGPS algorithm is proposed and some experiments and analysis are peformed. Experiment results show that IDGPS can achieve the positioning performance as accurate as the DGPS can provide.

  • PDF

Intelligent Vehicle Management Using Location-Based Control with Dispatching and Geographic Information

  • Kim Dong-Ho;Kim Jin-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.249-252
    • /
    • 2004
  • The automatic determination of vehicle operation status as well as continuous tracking of vehicle location with intelligent management is one of major elements to achieve the goals. Especially, vehicle operation status can only be analyzed in terms of expert experiences with real-time location data with scheduling information. However the scheduling information of individual vehicle is very difficult to be interpreted immediately because there are hundreds of thousand vehicles are run at the same time in the national wide range workplace. In this paper, we propose the location-based knowledge management system(LKMs) using the active trajectory analysis method with routing and scheduling information to cope with the problems. This system uses an inference technology with dispatching and geographic information to generate the logistics knowledge that can be furnished to the manager in the central vehicle monitoring and controlling center.

  • PDF

Development of Automatic flight Control System for Low Cost Unmanned Aerial Vehicle (저가형 무인 항공기의 자동비행시스템 개발)

  • Yoo, Hyuk;Lee, Jang-Ho;Kim, Jae-Eun;An, Yi-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2004
  • Automatic flight control system (AFCS) for a low-cost unmanned aerial vehicle is described in this paper. Development process and block diagram of the AFCS are introduced. The flight control law for longitudinal and lateral channel autopilot is designed using optimization process. In this procedure, the performance index is composed of desired location of closed loop system poles and H$_2$norm of the resultant flight control system. This procedure is applied to the autopilot design of an unmanned target vehicle. Performance of the AFCS is evaluated by processor-in-the-loop simulation test and flight test. These results show that the AFCS has acceptable performance fur low cost UAV.

A Study on Automatic Position Detection System for the Detachable Mobile Seat of a Vehicle for the Handicapped (장애인 차량을 위한 탈착식 시트의 자동 위치감지시스템에 관한 연구)

  • Youn, Jae-Woong;Lee, Soo Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.25-33
    • /
    • 2012
  • This paper deals with the development of automatic docking system for the detachable mobile seat(DMS) of a vehicle for the handicapped people who are unable to ride in a car by oneself. Although such vehicles for the handicapped already exist, there is a need for a vehicle with improved docking method for convenience. This paper presents an automatic docking system using two ultrasonic sensors. In order to identify the precise location of the mobile seat in front of the vehicle door, the capability of ultrasonic sensor for detecting the part edge is analyzed and mathematical modeling is performed to measure the exact location of the side edge. And also, this paper presents an automatic docking method using this sensor system and the car lift which is provided in the inside of the car.

Analysis of the Shifting Transients from the Passenger Car with an Automatic Transmission considering the Vehicle Model (차량 모델을 고려한 자동변속기 차량의 변속 과도 특성 분석)

  • 공진형;박진호;김정윤;임원식;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.154-162
    • /
    • 2004
  • In this study, a mathematical model for analyzing the shifting transients of the passenger car with an automatic transmission is proposed. The proposed model comprises a power transmission system and a vehicle system, which are coupled. In order to extract the modeling parameters, on-road car test is carried out. The model is composed of a detailed powertrain, an engine/AT housing, a simplified suspension system, tires and a vehicle body model. On the test, the vehicle accelerations and pitch ratio are measured by using accelerometers and a gyro sensor. The speeds, the brake signal, and the throttle position are taken from sensors which already exist in the vehicle. Considering natural ftequencies, which is calculated from the measured accelerations, and the characteristic equation, vehicle model parameters are identified. Dynamic behaviors during upshift or downshift are simulated using the proposed vehicle model. By comparing and analyzing the simulation result and on-road car test data, the vibration of the Engine/AT housing influences the shifting transients. The effect of model parameters are also studied. Among model parameters, the location of engine mountings influences the vibration of the vehicle body.

Implementation of an Intelligent Automatic Parking Assist System (지능형 자동 주차 지원 시스템의 구현)

  • Park Cheong-Sool;Han Min-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.182-190
    • /
    • 2005
  • In the paper, we propose an intelligent automatic parking assist system. To realize an automatic parking, first, the prospective parking position and the location of a vehicle should be recognized. Second, the system should compute a path which introduces the parking position precisely with avoiding any obstacles. Third, the handle should be controlled so that the vehicle moves through the path. To calculate the location of the vehicle and its surroundings, the system applies the camera image method to transforming input images to the plane map. It also uses the inertial navigation method which recognizes the position and the direction of a moving vehicle by using a kinematic model of the vehicle. To generate a path of the vehicle, the simple path method and the Bezier spline method are tested. The divided arc method which generates multiple paths is also tested. We apply a method which makes the system choose the best path with multiple objective functions. We introduce the virtual road method, as a solution for the problem of mechanical time delay, to have the vehicle followed the designated path.

  • PDF

Dynamic Charncteristics for Laternl Strong Wind on Bimodal Tram (바이모달 트램의 횡풍에 대한 동적특성 해석)

  • Kim, Yeon-Su;Lim, Song-Gyu;Mok, Jai-Kyun;Kim, Myoung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.979-983
    • /
    • 2008
  • A bi-modal tram can travel in not only dedicated way but also road so as to reduce construction costs and increase vehicle operation efficiency, whose passenger capacity is 2,500 to 7,000 persons/direction/hour. A bi-modal has an electronic guidance system that knows the location and route of the vehicle, and uses magnetic markers in the road surface for reference. Since a bi-modal tram will be operated in the downtown area, there is some possibility that strong wind occurred between high-rise buildings can produce sudden lateral movement (displacement) of the vehicle to influence its automatic operation controlled by electronic guidance system. For bi-modal tram in the automatic operation mode, lateral movements occurred by strong wind were calculated and analyzed in the dynamic model developed by using the ADAMS. Some useful relations among vehicle speeds, wind speeds, and lateral behaviors were discussed in this paper.

  • PDF

Implementation of Vehicle Location Identification and Image Verification System in Port (항만내 차량 위치인식 및 영상 확인 시스템 구현)

  • Lee, Ki-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.201-208
    • /
    • 2009
  • As the ubiquitous environment is created, the latest ports introduce U-Port services in managing ports generally and embody container's location identification system, port terminal management system, and advanced information exchange system etc. In particular, the location identification system for freight cars and containers provide in real time the information on the location and condition for them, and enables them to cope with an efficient vehicle operation management and its related problems immediately. However, such a system is insufficient in effectively handling with the troubles in a large-scale port including freight car's disorderly driving, parking, stop, theft, damage, accident, trespassing and controlling. In order to solve these problems, this study structures the vehicle positioning system and the image verification system unsing high resolution image compression and AVE/H.264 store and transmission technology, able to mark and identify the vehicle location on the digital map while a freight car has stayed in a port since the entry of an automatic gate, or able to identify the place of accident through image remotely.

Implementation for precisely localizing and parking of Bimodal Tram (바이모달 트램의 위치 인식 방법 및 정밀 정차 구현)

  • Seo, Ki-Won;Park, Ju-Yeon;Lee, Sang-Nam;Ryu, Hee-Moon;Byun, Yeun-Sub
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.452-456
    • /
    • 2009
  • This paper presents a method for precisely localizing and parking of bimodal trams. In order to gam an automatically driving system for bimodal trams, precise up-to-date localization, velocity recognition, distance to next station and precise parking location estimation functions are required. This paper proposes a system consisting of control device, steering device, sensor input equipment, driving system, tachometer, vehicle-side sensors, magnetic markers and magnetic sensors. The tram recognizes the precise location via magnetic markers containing information. Parking position and precise distance calculation is embodied by a tachometer. The vehicle-side sensors are used to assure safe station approaching and parking magnetic markers provide improvement of precision while tram parking. This paper provides a system realizing localization and precise parking and afterwards the automatic drive test results are reported and analyzed.

  • PDF