The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOP’s). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOP’s so that each VOP represents a moving object. A parallel processing system is required an automatic segmentation to be processed in real-time, because an automatic segmentation is time consuming. This paper addresses the parallel processing: system for an automatic segmentation for separating moving object from the background in image sequences. The proposed parallel processing system comprises of processing elements (PE’s) and a multi-access memory system (MAMS). Multi-access memory system is a memory controller to perform parallel memory access with the variety of types: horizontal, vertical, and block access way. In order to realize these ways, a multi-access memory system consists of a memory module selection module, data routing modules, and an address calculation and routing module. The proposed system is simulated and evaluated by the CADENCE Verilog-XL hardware simulation package.
As a method to control the bacteria number in adequate level, a real time control system based on microscope image processing measurement for the bacteria is adopted. For the experiment, Ammonia-oxidizing bacteria such as Acinetobacter sp. are used. This paper proposed hybrid method combined watershed algorithm with adaptive automatic thresholding method to enhance segmentation efficiency of overlapped image. Experiments was done to show the effectiveness of the proposed method compared to traditional Otsu's method, Otsu's method with adaptive automatic thresholding method and human visual method.
Chaudhry, Asmatullah;Hassan, Mehdi;Khan, Asifullah;Choi, Seung Ho;Kim, Jin Young
Journal of Advanced Navigation Technology
/
v.17
no.1
/
pp.115-122
/
2013
Disease diagnostics based on medical imaging is getting popularity day by day. Presence of the atherosclerosis is one of the causes of narrowing of carotid arteries which may block partially or fully blood flow into the brain. Serious brain strokes may occur due to such types of blockages in blood flow. Early detection of the plaque and taking precautionary steps in this regard may prevent from such type of serious strokes. In this paper, we present an automatic image segmentation technique for carotid artery ultrasound images based on active contour approach. In our experimental study, we assume that ultrasound images are properly aligned before applying automatic image segmentation. We have successfully applied the automatic segmentation of carotid artery ultrasound images using snake based model. Qualitative comparison of the proposed approach has been made with the manual initialization of snakes for carotid artery image segmentation. Our proposed approach successfully segments the carotid artery images in an automated way to help radiologists to detect plaque easily. Obtained results show the effectiveness of the proposed approach.
This paper proposes a semiautomatic vertebra segmentation method that overcomes limitations of both manual segmentation requiring tedious user interactions and fully automatic segmentation that is sensitive to initial conditions. The proposed method extracts fence surfaces between vertebrae, and segments a vertebra using fence-limited region growing. A fence surface is generated by a deformable model utilizing valley information in a valley emphasized Gaussian image. Fence-limited region growing segments a vertebra using gray value homogeneity and fence surfaces acting as barriers. The proposed method has been applied to ten patient data sets, and produced promising results accurately and efficiently with minimal user interaction.
In this paper, we propose an algorithm for automatic segmentation of 3-dimesional brain MR images. In order to segment 3-dimensional brain MR images, we start segmentation from a mid-sagittal brain MR image. Then the segmented mid-sagittal brain MR image is used as a mask that is applied to the remaining lateral slices. Then we apply preprocessing, which includes thresholding and region-labeling, to the lateral slices, resulting in simplified 3-D brain MR images. Finally, we remove remaining problematic regions in the 3-dimensional brain MR image using the connectivity-based thresholding segmentation algorithm. Experiments show satisfactory results.
Siddiqi, Muhammad Hameed;Khan, Adil Mehmood;Lee, Seok-Won
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.11
/
pp.2839-2852
/
2013
Context-awareness is an essential part of ubiquitous computing, and over the past decade video based activity recognition (VAR) has emerged as an important component to identify user's context for automatic service delivery in context-aware applications. The accuracy of VAR significantly depends on the performance of the employed human body segmentation algorithm. Previous human body segmentation algorithms often engage modeling of the human body that normally requires bulky amount of training data and cannot competently handle changes over time. Recently, active contours have emerged as a successful segmentation technique in still images. In this paper, an active contour model with the integration of Chan Vese (CV) energy and Bhattacharya distance functions are adapted for automatic human body segmentation using depth cameras for VAR. The proposed technique not only outperforms existing segmentation methods in normal scenarios but it is also more robust to noise. Moreover, it is unsupervised, i.e., no prior human body model is needed. The performance of the proposed segmentation technique is compared against conventional CV Active Contour (AC) model using a depth-camera and obtained much better performance over it.
This paper proposes an automatic segmentation method of cortical bone and trabecular bone and describes an implementation of structural analysis method of trabecular bone in micro-CT images. The proposed segmentation method extract bone region with binarization using a threshold value. Next, it finds adjacent contour lines from outer boundary line into inward direction and sets candidate regions of cortical bone. Next it remove cortical bone region by finding the candidate cortical region of which the average pixel value is maximum. We implemented the method which computes four structural indicators BV/TV, Tb.Th, Tb.Sp, Tb.N by using VTK(Visualization ToolKit) and sphere fitting algorithm. We applied the implemented method to twenty proximal femur of mouses and compared with the manual segmentation method. Experimental result shows that the average error rates between the proposed segmentation method and the manual segmentation method are less than 3% for the four structural indicatiors. This result means that the proposed method can be used instead of the combersome and time consuming manual segmentation method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39C
no.6
/
pp.490-496
/
2014
The thickness of knee joint cartilage causes most diseases of knee. Therefore, an articular cartilage segmentation of knee magnetic resonance imaging (MRI) is required to diagnose a knee diagnosis correctly. In particular, fully automatic segmentation method of knee joint cartilage enables an effective diagnosis of knee disease. In this paper, we analyze a well-known level-set based segmentation method in brain MRI, and apply that method to knee MRI with solving some problems from different image characteristics. The proposed method, a fully automatic segmentation in whole process, enables to process faster than previous semi-automatic segmentation methods. Also it can make a three-dimension visualization which provides a specialist with an assistance for the diagnosis of knee disease. In addition, the proposed method provides more accurate results than the existing methods of articular cartilage segmentation in knee MRI through experiments.
This study analyzed the volumes generated by deep learning and atlas-based automatic segmentation methods, as well as the Dice similarity coefficient and 95% Hausdorff distance, according to the conditions of conduction voltage and conduction current in computed tomography for lung radiotherapy. The first result, the volumes generated by the atlas-based smart segmentation method showed the smallest volume change as a function of the change in tube voltage and tube current, while Aview RT ACS and OncoStudio using deep learning showed smaller volumes at tube currents lower than 100 mA. The second result, the Dice similarity coefficient, showed that Aview RT ACS was 2% higher than OncoStuido, and the 95% Hausdorff distance results also showed that Aview RT ACS analyzed an average of 0.2-0.5% higher than OncoStudio. However, the standard deviation of the respective results for tube current and tube voltage is lower for OncoStudio, which suggests that the results are consistent across volume variations. Therefore, caution should be exercised when using deep learning-based automatic segmentation programs at low perfusion voltages and low perfusion currents in CT imaging conditions for lung radiotherapy, and similar results were obtained with conventional atlas-based automatic segmentation programs at certain perfusion voltages and perfusion currents.
The Journal of Korean Institute of Communications and Information Sciences
/
v.22
no.11
/
pp.2425-2431
/
1997
The increased usage of Magnetic Resonance Image (MRI) required the method for automatic segmentation of medical image that is more useful so as to diagnose the dissecitive information of a atient quickly and effectively through MR scans.The use of neural networks may give much hep to solving the complex problems concerned the matter. This paper proposes the new method for automatic segmentation of magnetic resonance (MR) images of the brain by using neural networks brained by back-propagation algorithm. The trained neural networks by the segmenting MR images of a patient produce an output that networks can segment MR images of the other patients automatically, too and show a clear image of the brain.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.