• 제목/요약/키워드: automatic machine learning

검색결과 302건 처리시간 0.022초

Building Topic Hierarchy of e-Documents using Text Mining Technology

  • Kim, Han-Joon
    • 한국전자거래학회:학술대회논문집
    • /
    • 한국전자거래학회 2004년도 e-Biz World Conference
    • /
    • pp.294-301
    • /
    • 2004
  • ·Text-mining approach to e-documents organization based on topic hierarchy - Machine-Learning & information Theory-based ㆍ 'Category(topic) discovery' problem → document bundle-based user-constraint document clustering ㆍ 'Automatic categorization' problem → Accelerated EM with CU-based active learning → 'Hierarchy Construction' problem → Unsupervised learning of category subsumption relation

  • PDF

기계학습 기반의 인포그래픽 자동 추천 시스템 (Automated infographic recommendation system based on machine learning)

  • 김형균;이상희
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.17-22
    • /
    • 2021
  • 본 논문에서는 기존의 인포그래픽 제작방식을 개선하기 위하여 기계학습 기반의 인포그래픽 자동 추천 시스템을 제안하였다. 이 시스템은 복수의 인포그래픽 이미지를 기계학습하는 부분과 사용자의 기초자료 입력만으로 인포그래픽을 인공지능으로 자동 추천하는 부분으로 구성된다. 추천된 인포그랙픽은 라이브러리 형태로 제공되고, 드래그 & 드롭방식으로 추가적인 자료의 입력이 가능하게 된다. 또한, 입력한 자료의 크기에 따라 인포그래픽 이미지가 동적으로 조절되도록 설계하였다. 기계학습 기반의 인포그래픽 자동 추천 과정을 분석한 결과 레이아웃과 키워드에 대한 일치 성공율은 매우 높고, 타입에 대한 일치 성공률은 다소 낮게 나타났다. 추후 인포그래픽 부분별 이미지 타입에 대한 일치 성공률을 향상시키기 위한 연구가 필요할 것이다.

기계번역 사후교정(Automatic Post Editing) 연구 (Automatic Post Editing Research)

  • 박찬준;임희석
    • 한국융합학회논문지
    • /
    • 제11권5호
    • /
    • pp.1-8
    • /
    • 2020
  • 기계번역이란 소스문장(Source Sentence)을 타겟문장(Target Sentence)으로 컴퓨터가 번역하는 시스템을 의미한다. 기계번역에는 다양한 하위분야가 존재하며 APE(Automatic Post Editing)이란 기계번역 시스템의 결과물을 교정하여 더 나은 번역문을 만들어내는 기계번역의 하위분야이다. 즉 기계번역 시스템이 생성한 번역문에 포함되어 있는 오류를 수정하여 교정문을 만드는 과정을 의미한다. 기계번역 모델을 변경하는 것이 아닌 기계번역 시스템의 결과 문장을 교정하여 번역품질을 높이는 연구분야이다. 2015년부터 WMT 공동 캠페인 과제로 선정되었으며 성능 평가는 TER(Translation Error Rate)을 이용한다. 이로 인해 최근 APE에 모델에 대한 다양한 연구들이 발표되고 있으며 이에 본 논문은 APE 분야의 최신 동향에 대해서 다루게 된다.

벽면 이동로봇의 자동 균열검출에 적합한 기계학습 알고리즘에 관한 연구 (A Study on Machine Learning Algorithm Suitable for Automatic Crack Detection in Wall-Climbing Robot)

  • 박재민;김현섭;신동호;박명숙;김상훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.449-456
    • /
    • 2019
  • 본 논문은 진공을 이용한 흡착방식과 바퀴형 이동방식을 사용하는 벽면 이동로봇의 구성과 이러한 임베디드 환경에 적합하고 기계학습에 기반한 벽면 균열 자동 검출 알고리즘의 성능 비교에 관한 연구이다. 임베디드 시스템 환경에서 객체 학습을 위해 YOLO 등 최근에 시도된 학습 방법들을 적용하여 성능을 비교, 검토하였으며 기존의 에지 검출 알고리즘들과도 성능을 비교하였다. 결국, 본 연구에서는 균열검출을 잘하며 임베디드 환경에도 적합한 최적의 기계학습방법을 선택하고 기존 방법과 성능을 비교하여 우수성을 제시하였다. 또한, 검출된 균열의 영상을 저장하고 위치 정보를 추정하여 균열에 대한 정보를 관리자 기기로 전송하는 지능적인 문제해결 기능을 구축하였다.

음고 개수 정보 활용을 통한 기계학습 기반 자동악보전사 모델의 성능 개선 연구 (A study on improving the performance of the machine-learning based automatic music transcription model by utilizing pitch number information)

  • 이대호;이석진
    • 한국음향학회지
    • /
    • 제43권2호
    • /
    • pp.207-213
    • /
    • 2024
  • 본 논문은 기계학습 기반 자동악보전사 모델의 입력에 음악적인 정보를 추가하는 방법을 통해 원하는 성능 향상을 얻는 방법을 다루었다. 여기서, 추가한 음악적인 정보는 각 시간 단위마다 발생하는 음고 개수 정보이며, 이는 정답지에서 활성화되는 음고 개수를 세는 방법으로 획득한다. 획득한 음고 개수 정보는 기존 모델의 입력인 로그 멜-스펙트로그램 아래에 연결하여 사용했다. 본 연구에서는 네 가지 음악 정보를 예측하는 네 종류의 블록이 포함된 자동악보전사 모델을 사용하였으며, 각 블록이 예측해야하는 음악 정보에 해당하는 음고 개수 정보를 기존의 입력에 추가해주는 간단한 방법이 모델의 학습에 도움이 됨을 확인했다. 성능 개선을 검증하기 위하여 MIDI Aligned Piano Sounds(MAPS) 데이터를 활용하여 실험을 진행하였으며, 그 결과 모든 음고 개수 정보를 활용할 경우 프레임 기준 F1 점수에서 9.7 %, 끝점을 포함한 노트 기준 F1 점수에서 21.8 %의 성능 향상을 확인하였다.

기계학습을 통한 디스크립터 자동부여에 관한 연구 (A Study on automatic assignment of descriptors using machine learning)

  • 김판준
    • 정보관리학회지
    • /
    • 제23권1호
    • /
    • pp.279-299
    • /
    • 2006
  • 학술지 논문에 디스크립터를 자동부여하기 위하여 기계학습 기반의 접근법을 적용하였다. 정보학 분야의 핵심 학술지를 선정하여 지난 11년간 수록된 논문들을 대상으로 문헌집단을 구성하였고, 자질 선정과 학습집합의 크기에 따른 성능을 살펴보았다. 그 결과, 자질 선정에서는 카이제곱 통계량(CHI)과 고빈도 선호 자질 선정 기준들(COS, GSS, JAC)을 사용하여 자질을 축소한 다음, 지지벡터기계(SVM)로 학습한 결과가 가장 좋은 성능을 보였다. 학습집합의 크기에서는 지지벡터기계(SVM)와 투표형 퍼셉트론(VPT)의 경우에는 상당한 영향을 받지만 나이브 베이즈(NB)의 경우에는 거의 영향을 받지 않는 것으로 나타났다.

A Study on the Application of Measurement Data Using Machine Learning Regression Models

  • Yun-Seok Seo;Young-Gon Kim
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.47-55
    • /
    • 2023
  • The automotive industry is undergoing a paradigm shift due to the convergence of IT and rapid digital transformation. Various components, including embedded structures and systems with complex architectures that incorporate IC semiconductors, are being integrated and modularized. As a result, there has been a significant increase in vehicle defects, raising expectations for the quality of automotive parts. As more and more data is being accumulated, there is an active effort to go beyond traditional reliability analysis methods and apply machine learning models based on the accumulated big data. However, there are still not many cases where machine learning is used in product development to identify factors of defects in performance and durability of products and incorporate feedback into the design to improve product quality. In this paper, we applied a prediction algorithm to the defects of automotive door devices equipped with automatic responsive sensors, which are commonly installed in recent electric and hydrogen vehicles. To do so, we selected test items, built a measurement emulation system for data acquisition, and conducted comparative evaluations by applying different machine learning algorithms to the measured data. The results in terms of R2 score were as follows: Ordinary multiple regression 0.96, Ridge regression 0.95, Lasso regression 0.89, Elastic regression 0.91.

API 정보와 기계학습을 통한 윈도우 실행파일 분류 (Classifying Windows Executables using API-based Information and Machine Learning)

  • 조대희;임경환;조성제;한상철;황영섭
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1325-1333
    • /
    • 2016
  • 소프트웨어 분류 기법은 저작권 침해 탐지, 악성코드의 분류, 소프트웨어 보관소의 소프트웨어 자동분류 등에 활용할 수 있으며, 불법 소프트웨어의 전송을 차단하기 위한 소프트웨어 필터링 시스템에도 활용할 수 있다. 소프트웨어 필터링 시스템에서 유사도 측정을 통해 불법 소프트웨어를 식별할 경우, 소프트웨어 분류를 활용하여 탐색 범위를 축소하면 평균 비교 횟수를 줄일 수 있다. 본 논문은 API 호출 정보와 기계학습을 통한 윈도우즈 실행파일 분류를 연구한다. 다양한 API 호출 정보 정제 방식과 기계학습 알고리즘을 적용하여 실행파일 분류 성능을 평가한다. 실험 결과, PolyKernel을 사용한 SVM (Support Vector Machine)이 가장 높은 성공률을 보였다. API 호출 정보는 바이너리 실행파일에서 추출할 수 있는 정보이며, 기계학습을 적용하여 변조 프로그램을 식별하고 실행파일의 빠른 분류가 가능하다. 그러므로 API 호출 정보와 기계학습에 기반한 소프트웨어 분류는 소프트웨어 필터링 시스템에 활용하기에 적당하다.

딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구 (A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning)

  • 정민욱;김현지;곽채원;오유수
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

Language- Independent Sentence Boundary Detection with Automatic Feature Selection

  • Lee, Do-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1297-1304
    • /
    • 2008
  • This paper proposes a machine learning approach for language-independent sentence boundary detection. The proposed method requires no heuristic rules and language-specific features, such as part-of-speech information, a list of abbreviations or proper names. With only the language-independent features, we perform experiments on not only an inflectional language but also an agglutinative language, having fairly different characteristics (in this paper, English and Korean, respectively). In addition, we obtain good performances in both languages. We have also experimented with the methods under a wide range of experimental conditions, especially for the selection of useful features.

  • PDF