• Title/Summary/Keyword: automatic landing control system

Search Result 30, Processing Time 0.024 seconds

Automatic Landing in Adaptive Gain Scheduled PID Control Law

  • Ha, Cheol-Keun;Ahn, Sang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2345-2348
    • /
    • 2003
  • This paper deals with a problem of automatic landing guidance and control system design. The auto-landing control system for the longitudinal motion is designed in the classical PID controller. The controller gains are properly adapted to variation of the performance using fuzzy logic as a gain scheduler for the PID gains. This control logic is applied to the problem of the automatic landing control system design. From the numerical simulation using the 6DOF nonlinear model of the associated airplane, it is shown that the auto-landing maneuver is successfully achieved from the start of the flight conditions: 1500 ft altitude, 250 ft/sec airspeed and zero flight path angle.

  • PDF

Guidance and Control System Design for Automatic Carrier Landing of a UAV (무인 항공기의 함상 자동 착륙을 위한 유도제어 시스템 설계)

  • Koo, Soyeon;Lee, Dongwoo;Kim, Kijoon;Ra, Chung-Gil;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1085-1091
    • /
    • 2014
  • This paper presents the guidance and control design for automatic carrier landing of a UAV (Unmanned Aerial Vehicle). Differently from automatic landing on a runway on the ground, the motion of a carrier deck is not fixed and affected by external factors such as ship movement and sea state. For this reason, robust guidance/control law is required for safe shipboard landing by taking the relative geometry between the UAV and the carrier deck into account. In this work, linear quadratic optimal controller and longitudinal/lateral trajectory tracking guidance algorithm are developed based on a linear UAV model. The feasibility of the proposed control scheme and guidance law for the carrier landing are verified via numerical simulations using X-Plane and Matlab/simulink.

A Preliminary Study on the Application of a Fuzzy Controller for the Automatic Landing System of Small Aircraft (소형항공기 자동착륙시스템의 퍼지제어기 적용에 관한 기초 연구)

  • Kim, Keun-Taek;Kim, Eung-Tai;Seong, Kiejeong;Ahn, Seok-min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.86-93
    • /
    • 2012
  • Fuzzy control has emerged as a practical alternative to classical control schemes in controlling certain time-varying, nonlinear, and ill-defined processes. As the current of this kind of a research paradigm, we concluded that there is a need for application study of a fuzzy control theory to the flight control systems of small aircraft being to be developed at KARI. And then, this preliminary study was carried out to the automatic landing system of the canard aircraft (Firefly) for the purpose of the preparation of extension of research contents and various application areas, in which FMRLC was chosen as the fuzzy controller of the system.

Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter (무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리)

  • Kim, Deok-Ryeol;Kim, Do-Myoung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.

Design of a Digital Adaptive Flight Control Law for the ALFLEX

  • Ito, Hideya;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.519-524
    • /
    • 2003
  • In this report, a longitudinal adaptive flight control law is presented for the automatic landing system of a Japanese automatic landing flight experiment vehicle (ALFLEX). The longitudinal adaptive flight control law is designed to track an output of the vehicle to a guidance signal from the guidance portion of the automatic landing system. The proposed adaptive control law in the attitude control portion adjusts the controller gains continuously online as flight conditions change, in spite of the existence of unmodeled dynamics. The number of the controller gains to be adjusted is decreased to 1/2 from the previous studies. Computer simulation involving six-degree-of-freedom (DOF) nonlinear flight dynamics is performed to examine the effectiveness of the proposed adaptive control law. In order to verify the influence of the dispersion of the initial conditions, the Monte Carlo simulation is also applied. The initial conditions are more widely dispersed than the previous studies. As a result, except under the unsuitable initial conditions, the ALFLEX successfully landed on the runway.

  • PDF

Development of Flight Control System and Troubleshooting on Flight Test of a Tilt-Rotor Unmanned Aerial Vehicle

  • Kang, Youngshin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.120-131
    • /
    • 2016
  • The full results of troubleshooting process related to the flight control system of a tilt-rotor type UAV in the flight tests are described. Flight tests were conducted in helicopter, conversion, and airplane modes. The vehicle was flown using automatic functions, which include speed-hold, altitude-hold, heading-hold, guidance modes, as well as automatic take-off and landing. Many unexpected problems occurred during the envelope expansion tests which were mostly under those automatic functions. The anomalies in helicopter mode include vortex ring state (VRS), long delay in the automatic take-off, and the initial overshoot in the automatic landing. In contrast, the anomalies in conversion mode are untrimmed AOS oscillation and the calibration errors of the air data sensors. The problems of low damping in rotor speed and roll rate responses are found in airplane mode. Once all of the known problems had been solved, the vehicle in airplane mode gradually reached the maximum design speed of 440km/h at the operation altitude of 3km. This paper also presents a comprehensive detailing of the control systems of the tilt-rotor unmanned air vehicle (UAV).

Automatic Landing Guidance Law Design for Unmanned Aerial Vehicles based on Pursuit Guidance Law (추적유도기법 기반 무인항공기 자동착륙 유도법칙 설계)

  • Yoon, Seung-Ho;Bae, Se-Lin;Han, Young-Soo;Kim, Hyoun-Jin;Kim, You-Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1253-1259
    • /
    • 2008
  • This paper presents a landing controller and guidance law for net-recovery of fixed-wing unmanned aerial vehicles. A linear quadratic controller was designed using the system identification result of the unmanned aerial vehicle. A pursuit guidance law is applied to guide the vehicle to a recovery net with imaginary landing points on the desired approach path. The landing performance of a pure pursuit guidance, a constant pseudo pursuit guidance, and a variable pseudo pursuit guidance is compared. Numerical simulation using an unmanned aerial vehicle model was performed to verify the performance of the proposed landing guidance law.

A Study on the Image-based Automatic Flight Control of Mini Drone (미니드론의 영상기반 자동 비행 제어에 관한 연구)

  • Sun, Eun-Hey;Luat, Tran Huu;Kim, Dongyeon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.536-541
    • /
    • 2015
  • In this paper, we propose a the image-based automatic flight control system for the mini drone. Automatic flight system with a camera on the ceiling and markers on the floor and landing position is designed in an indoor environment. Images from the ceiling camera is used not only to recognize the makers and landing position but also to track the drone motion. PC sever identifies the location of the drone and sends control commands to the mini drone. Flight controller of the mini drone is designed using state-machine algorithm, PID control and way-point position control method. From the, The proposed automatic flight control system is verified through the experiments of the mini drone. We see that known makers in environment are recognized and the drone can follows the trajectories with the specific ㄱ, ㄷ and ㅁ shapes. Also, experimental results show that the drone can approach and correctly land on the target positions which are set at different height.

Design of Deep Learning-Based Automatic Drone Landing Technique Using Google Maps API (구글 맵 API를 이용한 딥러닝 기반의 드론 자동 착륙 기법 설계)

  • Lee, Ji-Eun;Mun, Hyung-Jin
    • Journal of Industrial Convergence
    • /
    • v.18 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • Recently, the RPAS(Remote Piloted Aircraft System), by remote control and autonomous navigation, has been increasing in interest and utilization in various industries and public organizations along with delivery drones, fire drones, ambulances, agricultural drones, and others. The problems of the stability of unmanned drones, which can be self-controlled, are also the biggest challenge to be solved along the development of the drone industry. drones should be able to fly in the specified path the autonomous flight control system sets, and perform automatically an accurate landing at the destination. This study proposes a technique to check arrival by landing point images and control landing at the correct point, compensating for errors in location data of the drone sensors and GPS. Receiving from the Google Map API and learning from the destination video, taking images of the landing point with a drone equipped with a NAVIO2 and Raspberry Pi, camera, sending them to the server, adjusting the location of the drone in line with threshold, Drones can automatically land at the landing point.

Auto-Landing Guidance System Design for Smart UAV

  • Min, Byoung-Mun;Shin, Hyo-Sang;Tahk, Min-Jea;Kim, Boo-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.118-128
    • /
    • 2006
  • This paper deals with auto-landing guidance system design applicable to Smart UAV(Unmanned Aerial Vehicle). The proposed guidance law generates horizontal position, velocity and altitude commands in the longitudinal channel and heading angle command in the lateral channel to track a predetermined trajectory for automatic landing. The longitudinal guidance commands are derived from an approximated dynamic equations in vertical plane. These longitudinal guidance commands are appropriately distributed to each control input as the flight mode of Smart UAV is changed. The concept of VOR(VHF Omni-directional Range) guidance system is applied to generate the required heading angle commands to eliminate the lateral deviation from the desired trajectory. The performance of the proposed guidance system for Smart UAV is evaluated using the nonlinear simulation. Simulation results show that the proposed guidance system for auto- landing provides good tracking performance along the predetermined landing trajectory.