The Purpose of this study Gerber company AM-300 system of the automatic system of Producing the original form the automatic system of Producing the original form of "Jogori(a Korean Jacket)' and Grading by the usage of computers and find out its efficiency. In the result, the auther has found out the following facts and became confident on the facts; The AM-300 program of the automatic system enabled to produce the original form of 'Jogori' and Grading fitting in a short time and definately, and which indicated that the automatically producing system of the original form of 'Jorgori' and Granding is efficient. Even in the aspect of education, it has been acknowledged that there is necessity of using computers, the accumulation of techincs and technology based on traditions by cultivating professional designers, and computerization so that the composition of 'Hanbok' (Korean clothes) should be rational and scientific. In addition, advertisement and education on the traditionalism and superiority of 'Hanblk' are indispensable and absolutely necessary. Also, to succeed folk costumes rightly, the usage of computers is thought to be a way to effectiveness. So far in the study, only the automatic system of producing the original form of 'Jogori' and Grading through computers is emphasized on, however in the future, such an automatic system should be continuously supplemented, studied on and developed even in other various fields such as in pattern making, design, products planning, etc..
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.16
no.5
/
pp.109-120
/
2017
It is important to estimate objectively in the driving test. Especially, the driving test is examined by totally driving ability, rule observation and situational judgement. For this, a grading automation system for driving test was presented by using GPS, sensor data and equipment operation informations. This system is composed of vehicle mounted module, automatic grading terminal, data controller, data storage and processing server. The vehicle mounted module gathters sensor data in the car. The terminal performs automatic grading using the received sensor data according the driving test criterion. To overcome the misposition of vehicle in the map due to GPS error, we proposed the automatic grading system by map matching method, path deviation and return algorithm. In the experimental results, it was possible to grade automatically, display the right position of the car, and return to the right path under 10 seconds when the vehicle was out of the shadow region of the GPS. This system can be also applied to the driving education.
Proceedings of the Korean Society for Agricultural Machinery Conference
/
1996.06c
/
pp.607-614
/
1996
A computer vision based automatic intelligent sorting system for dried oak mushrooms has been developed. The developed system was composed of automatic devices for mushroom feeding and handling, two sets of computer vision system for grading , and computer with digital I/O board for PLC interface, and pneumatic actuators for the system control. Considering the efficiency of grading process and the real time on-line system implementation, grading was done sequentially at two consecutive independent stages using the captured image of either side. At the first stage, four grades of high quality categories were determined from the cap surface images and at the second stage 8 grades of medium and low quality categories were determined from the gill side images. The previously developed neuro-net based mushroom grading algorithm which allowed real time on-line processing was implemented and tested. Developed system revealed successful performance of sorting capability of approximate y 5, 000 mushrooms/hr per each line i.e. average 0.75 sec/mushroom with the grading accuracy of more than 88%.
Hwang, H.;Kim, S. C.;Im, D. H.;Song, K. S.;Choi, T. H.
Journal of Biosystems Engineering
/
v.26
no.2
/
pp.147-154
/
2001
In Korea and Japan, dried oak mushrooms are classified into 12 to 16 different categories based on its external visual quality. And grading used to be done manually by the human expert and is limited to the randomly sampled oak mushrooms. Visual features of dried oak mushrooms dominate its quality and are distributed over both sides of the gill and the cap. The 2nd prototype computer vision based automatic grading and sorting system for dried oak mushrooms was developed based on the 1st prototype. Sorting function was improved and overall system for grading was simplified to one stage grading instead of two stage grading by inspecting both front and back sides of mushrooms. Neuro-net based side(gill or cap) recognition algorithm of the fed mushroom was adopted. Grading was performed with both images of gill and cap using neural network. A real time simultaneous discharge algorithm, which is good for objects randomly fed individually and for multi-objects located along a series of discharge buckets, was developed and implemented to the controller and the performance was verified. Two hundreds samples chosen from 10 samples per 20 grade categories were used to verify the performance of each unit such as feeding, reversing, grading, and discharging unites. Test results showed that success rates of one-line feeding, reversing, grading, and discharging functions were 93%, 95%, 94%, and 99% respectively. The developed prototype revealed successful performance such as the approximate sorting capability of 3,600 mushrooms/hr per each line i.e. average 1sec/mushroom. Considering processing time of approximate 0.2 sec for grading, it was desired to reduce time to reverse a mushroom to acquire the reversed surface image.
As consumption of high-quality fruits increases and sales and packaging units become smaller, the demand for automatic fruit grading systems is increasing. Compared to other crops, the quality of fruit is determined by visual characteristics such as shape, color, and scratches, rather than just physical size and weight. Accordingly, this study presents a CNN model that can effectively extract and classify the visual features of fruits and a perceptron that classifies fruits using physical features, and proposes a stacking ensemble model that can effectively combine the classification results of these two neural networks. The experiments with AI Hub public data show that the stacking ensemble model is effective for grading fruits. However, the ensemble model does not always improve the performance of classifying all the fruit grading. So, it is necessary to adapt the model according to the kind of fruit.
An automatic grading algorithm was developed to replace the manual trading of white ginseng. The algorithm consists of three consecutive stages, (a) image acquisition and preprocessing, (b) mathematical feature extraction, and (c) grade decision using artificial neural network. Mathematical features such as area ratio, mean and standard deviation of graylevel, skewness of graylevel histogram, and the number of run segment are extracted from five equally divided parts of ginseng. An artificial neural network model was used to classify white ginsengs into three categories. The performance of the algorithm was evaluated using 120 ginseng samples and the rate of successful classification was 74%.
Proceedings of the Korean Society for Agricultural Machinery Conference
/
1993.10a
/
pp.1230-1242
/
1993
In a case of mushroom (Lentinus Edodes L.) , visual features are crucial for grading and the quantitative evaluation of the growth state. The extracted quantitative visual features can be used as a performance index for the drying process control or used for the automatic sorting and grading task. First, primary external features of the front and back sides of mushroom were analyzed. And computer vision based algorithm were developed for the extraction and measurement of those features. An automatic thresholding algorithm , which is the combined type of the window extension and maximum depth finding was developed. Freeman's chain coding was modified by gradually expanding the mask size from 3X3 to 9X9 to preserve the boundary connectivity. According to the side of mushroom determined from the automatic recognition algorithm size thickness, overall shape, and skin texture such as pattern, color (lightness) ,membrane state, and crack were quantified and measured. A portion of t e stalk was also identified and automatically removed , while reconstructing a new boundary using the Overhauser curve formulation . Algorithms applied and developed were coded using MS_C language Ver, 6.0, PC VISION Plus library functions, and VGA graphic function as a menu driven way.
PARK, Hwan-Cheol;KIM, Tae-Wan;LEE, Dong-Hun;KIM, Young-Bok
Journal of the Korean Society of Fisheries and Ocean Technology
/
v.56
no.1
/
pp.55-60
/
2020
In this study, the authors introduce a newly developed flatfish grading system. Owing to the features of flatfish with and wide body, the general types of grading system are not easy to apply for it. Furthermore, the flatfish to be graded is alive such that the existing measurement and grading systems cannot be used for it as well. This study gives a solution for measuring and grading the flatfish with high speed and good accuracy. For this object, the authors developed flatfish measurement and grading system. This system consist of the feeding, conveying, measurement part and sorting part. Especially, the measurement part is made by vision based measuring technique which satisfies the given specification. The result from the experiment shows that the developed system is applicable for measuring and grading the flatfish sizes in variety.
Proceedings of the Korean Society for Agricultural Machinery Conference
/
1993.10a
/
pp.1243-1253
/
1993
Visual features of a mushroom(Lentinus Edodes L) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading looks simple, a decision making undereath the simple action comes form the results of the complex neural processing of the visual image. And processing details involved in the visual recognition of the human brain has not been fully investigated yet. Recently, however, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, a research of the neuro-net based human like information processing toward the agricultural product and processing are widely open and promising. In this pape , neuro-net based grading and sorting system was developed for a mushroom . A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features and their corresponding grades were used as input/output pairs for training the neural network and the trained results of the network were presented . The computer vision system used is composed of the IBM PC compatible 386DX, ITEX PFG frame grabber, B/W CCD camera , VGA color graphic monitor , and image output RGB monitor.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2001.10a
/
pp.363-366
/
2001
The present process of grading leather quality by the rare eyes is not reliable. Because inconsistency of grading due to eyes strain for long time can cause incorrect result of grading. Therefore it is necessary to automate the process of grading quality of leather based on objective standard for it. In this paper, leather automatic classification system consists of the process obtaining the information of leather and the process grading the quality of leather from the information. Leather is graded by its information such as texture density, types and distribution of defects. This paper proposes the algorithm which sorts out leather information like texture density and defects from the gray-level images obtained by digital camera. The density information is sorted out by the distribution value of Fourier spectrum which comes out after original image is converted to the image in frequency domain. And the defect information is obtained by the statistics of pixels which is relevant to Window using searching Window after sort out boundary lines from preprocessed images. The information for entire leather is used as standard of grading leather quality, and the proposed algorithm is practically applied to machine vision system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.