• Title/Summary/Keyword: automatic grading

Search Result 79, Processing Time 0.026 seconds

A study on the Automatic Drafting for Jogori pattern and Grading by using Computer (Computer를 이용한 여자저고리 모형의 GRADING 및 자동제도)

  • 염영란;조효순
    • Journal of the Korean Society of Costume
    • /
    • v.18
    • /
    • pp.307-319
    • /
    • 1992
  • The Purpose of this study Gerber company AM-300 system of the automatic system of Producing the original form the automatic system of Producing the original form of "Jogori(a Korean Jacket)' and Grading by the usage of computers and find out its efficiency. In the result, the auther has found out the following facts and became confident on the facts; The AM-300 program of the automatic system enabled to produce the original form of 'Jogori' and Grading fitting in a short time and definately, and which indicated that the automatically producing system of the original form of 'Jorgori' and Granding is efficient. Even in the aspect of education, it has been acknowledged that there is necessity of using computers, the accumulation of techincs and technology based on traditions by cultivating professional designers, and computerization so that the composition of 'Hanbok' (Korean clothes) should be rational and scientific. In addition, advertisement and education on the traditionalism and superiority of 'Hanblk' are indispensable and absolutely necessary. Also, to succeed folk costumes rightly, the usage of computers is thought to be a way to effectiveness. So far in the study, only the automatic system of producing the original form of 'Jogori' and Grading through computers is emphasized on, however in the future, such an automatic system should be continuously supplemented, studied on and developed even in other various fields such as in pattern making, design, products planning, etc..

  • PDF

Realization of a Automatic Grading System for Driver's License Test (자동차 운전면허 시험을 위한 자동 채점 시스템 구현)

  • Kim, Chul Woo;Lee, Dong Hahk;Yang, Jae Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.109-120
    • /
    • 2017
  • It is important to estimate objectively in the driving test. Especially, the driving test is examined by totally driving ability, rule observation and situational judgement. For this, a grading automation system for driving test was presented by using GPS, sensor data and equipment operation informations. This system is composed of vehicle mounted module, automatic grading terminal, data controller, data storage and processing server. The vehicle mounted module gathters sensor data in the car. The terminal performs automatic grading using the received sensor data according the driving test criterion. To overcome the misposition of vehicle in the map due to GPS error, we proposed the automatic grading system by map matching method, path deviation and return algorithm. In the experimental results, it was possible to grade automatically, display the right position of the car, and return to the right path under 10 seconds when the vehicle was out of the shadow region of the GPS. This system can be also applied to the driving education.

Intelligent Automatic Sorting System For Dried Oak Mushrooms

  • Lee, C.H.;Hwang, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.607-614
    • /
    • 1996
  • A computer vision based automatic intelligent sorting system for dried oak mushrooms has been developed. The developed system was composed of automatic devices for mushroom feeding and handling, two sets of computer vision system for grading , and computer with digital I/O board for PLC interface, and pneumatic actuators for the system control. Considering the efficiency of grading process and the real time on-line system implementation, grading was done sequentially at two consecutive independent stages using the captured image of either side. At the first stage, four grades of high quality categories were determined from the cap surface images and at the second stage 8 grades of medium and low quality categories were determined from the gill side images. The previously developed neuro-net based mushroom grading algorithm which allowed real time on-line processing was implemented and tested. Developed system revealed successful performance of sorting capability of approximate y 5, 000 mushrooms/hr per each line i.e. average 0.75 sec/mushroom with the grading accuracy of more than 88%.

  • PDF

Development of Automatic Grading and Sorting System for Dry Oak Mushrooms -2nd Prototype- (건표고 자동 등급선별 시스템 개발 -시작 2호기-)

  • Hwang, H.;Kim, S. C.;Im, D. H.;Song, K. S.;Choi, T. H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.147-154
    • /
    • 2001
  • In Korea and Japan, dried oak mushrooms are classified into 12 to 16 different categories based on its external visual quality. And grading used to be done manually by the human expert and is limited to the randomly sampled oak mushrooms. Visual features of dried oak mushrooms dominate its quality and are distributed over both sides of the gill and the cap. The 2nd prototype computer vision based automatic grading and sorting system for dried oak mushrooms was developed based on the 1st prototype. Sorting function was improved and overall system for grading was simplified to one stage grading instead of two stage grading by inspecting both front and back sides of mushrooms. Neuro-net based side(gill or cap) recognition algorithm of the fed mushroom was adopted. Grading was performed with both images of gill and cap using neural network. A real time simultaneous discharge algorithm, which is good for objects randomly fed individually and for multi-objects located along a series of discharge buckets, was developed and implemented to the controller and the performance was verified. Two hundreds samples chosen from 10 samples per 20 grade categories were used to verify the performance of each unit such as feeding, reversing, grading, and discharging unites. Test results showed that success rates of one-line feeding, reversing, grading, and discharging functions were 93%, 95%, 94%, and 99% respectively. The developed prototype revealed successful performance such as the approximate sorting capability of 3,600 mushrooms/hr per each line i.e. average 1sec/mushroom. Considering processing time of approximate 0.2 sec for grading, it was desired to reduce time to reverse a mushroom to acquire the reversed surface image.

  • PDF

Automatic Fruit Grading Using Stacking Ensemble Model Based on Visual and Physical Features (시각적 특징과 물리적 특징에 기반한 스태킹 앙상블 모델을 이용한 과일의 자동 선별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1386-1394
    • /
    • 2022
  • As consumption of high-quality fruits increases and sales and packaging units become smaller, the demand for automatic fruit grading systems is increasing. Compared to other crops, the quality of fruit is determined by visual characteristics such as shape, color, and scratches, rather than just physical size and weight. Accordingly, this study presents a CNN model that can effectively extract and classify the visual features of fruits and a perceptron that classifies fruits using physical features, and proposes a stacking ensemble model that can effectively combine the classification results of these two neural networks. The experiments with AI Hub public data show that the stacking ensemble model is effective for grading fruits. However, the ensemble model does not always improve the performance of classifying all the fruit grading. So, it is necessary to adapt the model according to the kind of fruit.

Automatic Grading Algorithm for White Ginseng (백삼 등급 자동판정 알고리즘 개발)

  • 김철수;이종호;박승제;김명호
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.607-614
    • /
    • 1998
  • An automatic grading algorithm was developed to replace the manual trading of white ginseng. The algorithm consists of three consecutive stages, (a) image acquisition and preprocessing, (b) mathematical feature extraction, and (c) grade decision using artificial neural network. Mathematical features such as area ratio, mean and standard deviation of graylevel, skewness of graylevel histogram, and the number of run segment are extracted from five equally divided parts of ginseng. An artificial neural network model was used to classify white ginsengs into three categories. The performance of the algorithm was evaluated using 120 ginseng samples and the rate of successful classification was 74%.

  • PDF

Automatic Visual Feature Extraction And Measurement of Mushroom (Lentinus Edodes L.)

  • Heon-Hwang;Lee, C.H.;Lee, Y.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1230-1242
    • /
    • 1993
  • In a case of mushroom (Lentinus Edodes L.) , visual features are crucial for grading and the quantitative evaluation of the growth state. The extracted quantitative visual features can be used as a performance index for the drying process control or used for the automatic sorting and grading task. First, primary external features of the front and back sides of mushroom were analyzed. And computer vision based algorithm were developed for the extraction and measurement of those features. An automatic thresholding algorithm , which is the combined type of the window extension and maximum depth finding was developed. Freeman's chain coding was modified by gradually expanding the mask size from 3X3 to 9X9 to preserve the boundary connectivity. According to the side of mushroom determined from the automatic recognition algorithm size thickness, overall shape, and skin texture such as pattern, color (lightness) ,membrane state, and crack were quantified and measured. A portion of t e stalk was also identified and automatically removed , while reconstructing a new boundary using the Overhauser curve formulation . Algorithms applied and developed were coded using MS_C language Ver, 6.0, PC VISION Plus library functions, and VGA graphic function as a menu driven way.

  • PDF

A study on the development of automatic flatfish grading system (편평어 자동선별시스템 개발에 관한 연구)

  • PARK, Hwan-Cheol;KIM, Tae-Wan;LEE, Dong-Hun;KIM, Young-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • In this study, the authors introduce a newly developed flatfish grading system. Owing to the features of flatfish with and wide body, the general types of grading system are not easy to apply for it. Furthermore, the flatfish to be graded is alive such that the existing measurement and grading systems cannot be used for it as well. This study gives a solution for measuring and grading the flatfish with high speed and good accuracy. For this object, the authors developed flatfish measurement and grading system. This system consist of the feeding, conveying, measurement part and sorting part. Especially, the measurement part is made by vision based measuring technique which satisfies the given specification. The result from the experiment shows that the developed system is applicable for measuring and grading the flatfish sizes in variety.

Neuro-Net Based Automatic Sorting And Grading of A Mushroom (Lentinus Edodes L)

  • Hwang, H.;Lee, C.H.;Han, J.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1243-1253
    • /
    • 1993
  • Visual features of a mushroom(Lentinus Edodes L) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading looks simple, a decision making undereath the simple action comes form the results of the complex neural processing of the visual image. And processing details involved in the visual recognition of the human brain has not been fully investigated yet. Recently, however, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, a research of the neuro-net based human like information processing toward the agricultural product and processing are widely open and promising. In this pape , neuro-net based grading and sorting system was developed for a mushroom . A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features and their corresponding grades were used as input/output pairs for training the neural network and the trained results of the network were presented . The computer vision system used is composed of the IBM PC compatible 386DX, ITEX PFG frame grabber, B/W CCD camera , VGA color graphic monitor , and image output RGB monitor.

  • PDF

Texture Analysis Algorithm and its Application to Leather Automatic Classification Inspection System (텍스처 분석 알고리즘과 피혁 자동 선별 시스템에의 응용)

  • 김명재;이명수;권장우;김광섭;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.363-366
    • /
    • 2001
  • The present process of grading leather quality by the rare eyes is not reliable. Because inconsistency of grading due to eyes strain for long time can cause incorrect result of grading. Therefore it is necessary to automate the process of grading quality of leather based on objective standard for it. In this paper, leather automatic classification system consists of the process obtaining the information of leather and the process grading the quality of leather from the information. Leather is graded by its information such as texture density, types and distribution of defects. This paper proposes the algorithm which sorts out leather information like texture density and defects from the gray-level images obtained by digital camera. The density information is sorted out by the distribution value of Fourier spectrum which comes out after original image is converted to the image in frequency domain. And the defect information is obtained by the statistics of pixels which is relevant to Window using searching Window after sort out boundary lines from preprocessed images. The information for entire leather is used as standard of grading leather quality, and the proposed algorithm is practically applied to machine vision system.

  • PDF