The Journal of The Korea Institute of Intelligent Transport Systems
/
v.7
no.5
/
pp.64-76
/
2008
To increase road safety at blackspots, it is needed to develop a new method that can process before accident occurrence. Accident situation could result from traffic conflict. Traffic conflict decision technique has an advantage that can acquire and analyze data in time and confined space that is less through investigation. Therefore, traffic conflict technique is highly expected to be used in many application of road safety. This study developed traffic conflict decision program that can analyze and process from signalized intersection image. Program consists of the following functional modules: an image input module that acquires images from the CCTV camera, a Save-to-Buffer module which stores the entered images by differentiating them into background images, current images, difference images, segmentation images, and a conflict detection module which displays the processed results. The program was developed using LabVIEW 8.5 (a graphic language) and the VISION module library.
Journal of Korean Tunnelling and Underground Space Association
/
v.20
no.6
/
pp.1161-1175
/
2018
An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.
Hyoungtaek Kim;Chang-Young Park;Sang In Kim;Min Chae Kim;Jungil Lee
Nuclear Engineering and Technology
/
v.56
no.6
/
pp.2113-2119
/
2024
This study presents the development and characterization of a prototype TL/OSL reader for the retrospective dose assessment of individuals in radiological emergencies. The reader is portable, semi-automatic, and capable of accurate measurements. The dimension of the reader is 25 × 25 × 37 cm3 and the weight is about 15 kg. The reader consists of a sample moving stage, a heating module, an optical stimulation module, a detection module, a data acquisition (DAQ) unit, a nitrogen gas control module, and a PC with a GUI program. The reader has three measurement modes: TL, CW_OSL, and custom mode. The reader was characterized using commercial thermal luminescence dosimeters (TLD, LiF:Mg,Cu,Si) and optically stimulated dosimeters (OSLD, Al2O3:C), as well as fortuitous materials, such as display glasses and resistors of mobile phone. The results showed that the reader is capable of measuring signals with a detection limit of up to 0.02 mGy using a commercial dosimeter. In the dose recovery test using fortuitous materials, the reconstructed doses obtained three days post-irradiation closely aligned with the initially administered doses. As a result, this study suggests that the developed TL/OSL reader is a promising instrument for emergency dose assessment at accident sites.
Since construction sites are exposed to outdoor environments, working conditions are significantly dangerous. Thus, wearing of the personal protective equipments such as safety helmet is very important for worker safety. However, construction workers are often wearing-off the helmet as inconvenient and uncomportable. As a result, a small mistake may lead to serious accident. For this, checking of wearing safety helmet is important task to safety managers in field. However, due to the limited time and manpower, the checking can not be executed for every individual worker spread over a large construction site. Therefore, if an automatic checking system is provided, field safety management should be performed more effectively and efficiently. In this study, applicability of deep learning based computer vision technology is investigated for automatic checking of wearing safety helmet in construction sites. Faster R-CNN deep learning algorithm for object detection and classification is employed to develop the automatic checking model. Digital camera images captured in real construction site are used to validate the proposed model. Based on the results, it is concluded that the proposed model may effectively be used for automatic checking of wearing safety helmet in construction site.
Journal of Korean Tunnelling and Underground Space Association
/
v.19
no.5
/
pp.813-827
/
2017
Surveillance cameras installed in tunnels capture the various video frames effected by dynamic and variable factors. In addition, localizing and managing the cameras in tunnel is not affordable, and quality of capturing frame is effected by time. In this paper, we introduce a new method to detect and track the vehicles in tunnel by using surveillance cameras installed in a tunnel. It is difficult to detect the video frames directly from surveillance cameras due to the motion blur effect and blurring effect on lens by dirt. In order to overcome this difficulties, two new methods such as Differential Frame/Non-Maxima Suppression (DFNMS) and Haar Cascade Detector to track cars are proposed and investigated for their feasibilities. In the study, it was shown that high precision and recall values could be achieved by the two methods, which then be capable of providing practical data and key information to an automatic accident detection system in tunnels.
It is hard to predict when and where a fall accident will happen. Also, if rapid follow-up measures on it are not performed, a fall accident leads to a threat of life, so studies that can automatically detect a fall accident have become necessary. Among automatic fall-accident detection techniques, a fall detection scheme using an IMU (inertial measurement unit) sensor attached to a wrist is difficult to detect a fall accident due to its movement, but it is recognized as a technique that is easy to wear and has excellent accessibility. To overcome the difficulty in obtaining fall data, this study proposes an algorithm that efficiently learns less data through machine learning such as KNN (k-nearest neighbors) and SVM (support vector machine). In addition, to improve the performance of these mathematical classifiers, this study utilized feature data aquired in the frequency space. The proposed algorithm analyzed the effect by diversifying the parameters of the model and the parameters of the frequency feature extractor through experiments using standard datasets. The proposed algorithm could adequately cope with a realistic problem that fall data are difficult to obtain. Because it is lighter than other classifiers, this algorithm was also easy to implement in small embedded systems where SIMD (single instruction multiple data) processing devices were difficult to mount.
The use of satellite remote sensing in maritime safety and security can aid in the detection of illegal fishing activities and provide more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which use the ground-based radar system have some difficulties in detecting moving ships due to the limited detection range. A virtual vessel traffic control system is introduced to contribute to prevent a marine accident such as collision and stranding from happening. Existing VTS has its limit. The virtual vessel traffic control system consists of both data acquisition by satellite remote sensing and a simulation of traffic environment stress based on the satellite data, remotely sensed data. And it could be used to provide timely and detailed information about the marine safety, including the location, speed and direction of ships, and help us operate vessels safely and efficiently. If environmental stress values are simulated for the ship information derived from satellite data, proper actions can be taken to prevent accidents. Since optical sensor has a high spatial resolution, JERS satellite data are used to track ships and extract their information. We present an algorithm of automatic identification of ship size and velocity. This paper lastly introduce the field testing results of ship detection by RADARSAT SAR imagery, and propose a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.
Kim, Jung-Yong;Lee, Ho-Sang;Min, Seung-Nam;Lee, Min-Ho
Journal of the Ergonomics Society of Korea
/
v.31
no.3
/
pp.421-426
/
2012
As headlamp technology advances, newly developed various headlamps were introduced in the market. The objective of this study is to quantitatively analyze the detection distance of the recently developed LED headlamps and existing headlamps, complying with specific technical standard. Background: The detection distance of headlamps is very important to prevent automobile accident at night time. The studies of detection distance of LED, Halogen and HID headlamp have been conducted, but no study has shown the detection distance of pedestrian target with various colors (Black, White, Blue). Method: The experiment of detection distance was conducted with 30 people, which divide into 2 groups as 15 men and 15 women. Automatic transferable target on the rail was manufactured in order to reduce the error of study's result, and ANOVA also conducted to analyze the main effect with sign color, sex and headlamp classified by detection distance. In addition, the luminance by average detection distance was measured as well. Results: The detection distance of headlamps was HID > LED > Halogen. The luminance measure of LED headlamp was lower than HID and Halogen headlamps. Conclusion: The headlamp performs a very significant role for safety at night time but it needs to be improved through assessment of visual characteristics. Also, it needs to be suggested the need of test method for dynamic detection distance concerning technical development is suggested.
Journal of Korean Tunnelling and Underground Space Association
/
v.24
no.3
/
pp.247-262
/
2022
In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.360-362
/
2012
교통수단의 발달과 생활수준의 향상으로 도로에 차량이 많이 늘어나고 교통사고가 많이 발생함에 따라, 교통사고 자동인식 시스템에 관한 연구가 많이 진행되고 있다. 본 논문에서는 카메라의 위치에 따라 두 객체의 관심영역 사이의 겹침을 해석하는 것이 달라져 규칙이 변하는 것을 방지하고, 사람의 추론과정과 같이 교통사고를 퍼지 규칙으로 모델링하여 획득한 데이터가 부정확할 경우에 발생하는 잘못된 추론을 보정하기 위한 퍼지 규칙기반 시스템을 제안한다. 카이스트 삼거리에서 촬영한 9개의 사고 시나리오 데이터에 대해 실험하여 DR 87.34%, CDR 89.13%, FAR 10.75%의 결과를 얻었고, 이를 기존의 규칙기반 시스템, 규칙-확률 시스템과 비교하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.