• 제목/요약/키워드: automated synoptic observing system

검색결과 59건 처리시간 0.032초

WRF-Hydro 모델을 활용한 국내 산악지역 돌발홍수 예측 적용성 평가

  • 류영;지희숙;임윤진;김백조
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.24-24
    • /
    • 2017
  • 홍수와 가뭄 등 수문기상재해 분석 및 사전 예측하기 위해서는 강수뿐만 아니라 토양수분, 증발산, 유량, 등과 같이 지표?하의 수문기상정보를 고려하는 것이 필요하다. 본 연구에서는 National Center for Atmospheric Research (NCAR)에서 개발된 고해상도 수문기상정보 모의가 가능한 WRF-Hydro를 활용하여 남강댐 유역에서 발생되는 돌발홍수 예측 적용성 평가를 수행하였다. 모델의 시공간 해상도는 1 hr, 150 m 이며, 기상 관측자료(Automatic Weather System, Automated Synoptic Observing System)를 사용하여 매개변수 민감도 실험을 실시하여 최적 모델 설정을 제시하였다. 고려된 매개변수는 격자 침투량을 결정하는 변수, 초기 저류 깊이, 표면 저항계수, 조도계수와 초기 토양수분 정보이며, 검증에 사용된 정보는 국가수자원관리종합정보시스템에서 1시간 단위로 제공되는 유입량 정보를 사용하였다. 그 결과 유출량은 격자 침투량을 결정하는 변수와 조도계수에 따라 민감하게 반응하였으며, 초기 토양수분량의 변화에 따라 시간에 따른 유출량의 변화가 강수에 민감하게 반응하는 것을 확인 할 수 있었다. 보정된 매개변수를 적용하여 돌발홍수 신고 지점의 유출량 변화를 살펴본 결과 강수의 발생과 동시에 매우 빠르게 유출량이 발생한 것을 볼 수 있었다.

  • PDF

도시지역 유인관측소 일조 관측환경 평가 모델 개발 (Development of Observational Environment Evaluation Model for Sunshine Duration at ASOSs Located in Urban Areas)

  • 김도용;김도형;김재진
    • 대기
    • /
    • 제23권3호
    • /
    • pp.275-282
    • /
    • 2013
  • In this study, the numerical model was developed to evaluate the observational environment of sunshine duration and, for evaluating the accuracy and utility of the model, it was verified against the observational data measured at Dae-gu Automated Synoptic Observing System (ASOS) located in an urban area. Three-dimensional topography and building configuration as the surface input data of the model were constructed using a Geographic Information System (GIS) data. First, the accuracy of the computing planetary positions suggested by Paul Schlyter was verified against the data provided by Korea Astronomy and Space Science Institute (KASI) and the results showed that the numerical model predicted the Sun's position (the solar azimuth and altitude angles) quite precisely. Then, this model was applied to reproduce the sunshine duration at the Dae-gu ASOS. The observed and calculated sunshine durations were similar to each other. However, the observed and calculated sunrise (sunset) times were delayed (curtailed), compared to those provided by KASI that considered just the ASOS's position information such as latitude, longitude, and elevation height but did not consider the building and topography information. Further investigation showed that this was caused by not only the topographic characteristic (higher in the east and lower in the west) but also the buildings located in the southeast near the sunrise and the southwest near the sunset. It was found that higher building resolution increased the accuracy of the model. It was concluded that, for the accurate evaluation of the sunshine duration, detailed building and topography information around the observing sites was required and the numerical model developed in this study was successful to predict and/or the sunshine duration of the ASOS located in an urban area.

다중 GCMs과 HSPF 모형을 이용한 한강유역 장기유출량 분석 (Continuous Runoff Analysis for the Han River Basin using Multiple GCMs and HSPF Model)

  • 박지훈;정임국;이은정;조재필
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2018
  • 본 연구의 목적은 한강유역을 대상으로 다중 GCMs (General Circulation Models)을 이용하여 장기유출량을 분석하는 데 있다. 기후변화 전망을 분석하기 위해 총 13개의 GCMs을 선정하여 사용하였다. SDQDM (Spatial Disaggregation-Quantile Delta Mapping) 방법을 이용하여 GCMs을 60개 종관기상관측장비 (Automated Synoptic Observing System, ASOS)에 대해 상세화하였다. GCMs은 총 6개의 변수(강수, 최고 기온, 최저기온, 풍속, 상대습도, 일사량)를 제공하였다. 장기유출량 분석은 투수지역과 불투수지역을 모두 고려할 수 있는 HSPF 모형을 선정하여 수행하였다. 장기유출량의 공간적인 범위는 한강유역의 16개 중권역을 기준으로 선정하였고, 시간적인 범위는 과거 기준 기간 (Reference period: 1976-2005), 미래 3개 기간 (Near future period: 2011-2040, Mid-century period: 2041-2070, Distance future period: 2071-2099)으로 30년 단위로 구분하여 선정하였다. 본 연구는 13개의 GCM을 사용하여 추정된 장기유출량의 연간 및 계절적 평균과 변동성을 분석하였다. 본 연구에서 HSPF 모형을 활용하여 분석한 결과는 복잡한 한강유역의 특성을 적절히 반영하여, 기후변화에 따른 수자원 계획 및 통합 유역 관리를 수립하기 위한 기초 자료로 활용될 수 있을 것이라 사료된다.

  • PDF

베이지안기법을 이용한 지점 및 지역빈도해석의 불확실성 평가 (Uncertainty assessment of point and regional frequency analysis using Bayesian method)

  • 이정훈;이옥정;김상단
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.406-406
    • /
    • 2021
  • 극한강우사상의 분석은 다양한 극치 분포로 구성된 극치이론을 통해 가능하다. 일반적으로 단일 지점의 극한사상의 분석을 위한 지점빈도해석 (Point Frequency Analysis, PFA)이 다양한 재현기간에 해당하는 강우량을 추정하는데 널리 사용되어왔다. 하지만 수문기후학적 극치기록은 시간적 그리고 공간적으로 제한적이다. 따라서 모의 불확실성을 줄이고 신뢰성 높은 결과를 도출하기 위해 서로 유사한 분포를 가질 수 있는 인근 지점의 활용하는 지역빈도해석 (Regional Frequency Analysis, RFA) 방법이 개발되어 적용되고 있다. 본 연구에서는 부산, 울산, 경남지역의 기상청 종관기상관측시스템(Automated Synoptic Observing System, ASOS) 울산, 부산, 통영, 진주, 거창, 합천, 밀양, 산청, 거제, 남해지점 일강수량을 자료를 기반으로 Metropolis-Hasting 알고리즘을 사용하여 일반극치분포(Generalized Extreme Value, GEV)의 매개변수를 추정하고 PFA 및 RFA의 불확실성을 평가하고자 한다. 이러한 연구는 공간적 구성 요소(예, 지리적 좌표, 고도)를 고려하지 못하며 추가변수 (예, 공변량)를 분석에 결합할 수 없는 등의 RFA의 한계를 극복하고, 명시적으로 불확실성을 추정하여 결과의 신뢰성을 확보 할 수 있는 계층적 베이지안 모델의 개발에 도움이 되리라 기대된다.

  • PDF

SSP 시나리오 기반 기상학적 가뭄지수를 이용한 미래 가뭄 전망 (Projected Changes in Drought Characteristics based on SSP Scenarios using Standardized Precipitation Index (SPI))

  • 김송현;남원호;전민기;윤동현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.289-289
    • /
    • 2022
  • 최근 기후변화의 영향으로 인해 가뭄과 같은 자연재해의 발생빈도가 증가하고 있다. 가뭄은 지속 기간이 길고 정량적인 피해 규모 및 심도 파악이 어려우며, 사회, 경제적 피해와 함께 농업 시스템 전반에 심각한 영향을 줄 수 있는 재해이다. 국내 가뭄 발생 경향은 2000년 이후 급증하고 있으며, 2015년 및 2017년의 경우 이례적인 극심한 가뭄이 발생하는 등 2000년 이전과는 다른 경향을 보이고 있다. 따라서, 미래 기후변화에 따른 국내 가뭄 발생에 대비하기 위해서는 장기적인 가뭄 전망이 요구된다. CMIP6 (Coupled Model Intercomparison Project 6)에 의해 개발된 공통사회경제경로 SSP (Shared Socio-economic Pathways) 시나리오는 사회 및 경제적 요소를 내포하여 미래의 완화 및 적응 기반 기후변화 시나리오로 정의된다. 본 연구에서는 SSP 시나리오를 활용하여 미래 강수자료를 구축하여 기상학적 가뭄지수, SPI (Standaridzed Precipitation Index)를 산정하고 가뭄 특성을 분석하고자 한다. 강수자료의 경우 국내 ASOS (Automated Synoptic Observing System) 기상관측소 기준 56개소를 대상으로 1973년부터 2021년까지 49개년 자료를 수집하였으며, SSP 시나리오와 SPI를 활용하여 국내 지역을 대상으로 미래 기후변화에 따른 가뭄 전망을 수행하고자 한다. SPI는 시간척도에 따라 3개월, 6개월, 9개월, 12개월 시간척도를 적용하고, SSP 시나리오의 경우 SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 시나리오를 적용하여 미래 기후변화 시나리오별 가뭄을 분석하고자 한다.

  • PDF

PNU CGCM 앙상블 예보 시스템의 겨울철 남한 기온 예측 성능 평가 (Evaluation of PNU CGCM Ensemble Forecast System for Boreal Winter Temperature over South Korea)

  • 안중배;이준리;조세라
    • 대기
    • /
    • 제28권4호
    • /
    • pp.509-520
    • /
    • 2018
  • The performance of the newly designed Pusan National University Coupled General Circulation Model (PNU CGCM) Ensemble Forecast System which produce 40 ensemble members for 12-month lead prediction is evaluated and analyzed in terms of boreal winter temperature over South Korea (S. Korea). The influence of ensemble size on prediction skill is examined with 40 ensemble members and the result shows that spreads of predictability are larger when the size of ensemble member is smaller. Moreover, it is suggested that more than 20 ensemble members are required for better prediction of statistically significant inter-annual variability of wintertime temperature over S. Korea. As for the ensemble average (ENS), it shows superior forecast skill compared to each ensemble member and has significant temporal correlation with Automated Surface Observing System (ASOS) temperature at 99% confidence level. In addition to forecast skill for inter-annual variability of wintertime temperature over S. Korea, winter climatology around East Asia and synoptic characteristics of warm (above normal) and cold (below normal) winters are reasonably captured by PNU CGCM. For the categorical forecast with $3{\times}3$ contingency table, the deterministic forecast generally shows better performance than probabilistic forecast except for warm winter (hit rate of probabilistic forecast: 71%). It is also found that, in case of concentrated distribution of 40 ensemble members to one category out of the three, the probabilistic forecast tends to have relatively high predictability. Meanwhile, in the case when the ensemble members distribute evenly throughout the categories, the predictability becomes lower in the probabilistic forecast.

수문기상 데이터 세트를 이용한 KLDAS(Korea Land Data Assimilation System)의 토양수분·증발산량 산출 (Calculation of Soil Moisture and Evapotranspiration for KLDAS(Korea Land Data Assimilation System) using Hydrometeorological Data Set)

  • 박광하;이경태;계창우;유완식;황의호;강도혁
    • 한국지리정보학회지
    • /
    • 제24권4호
    • /
    • pp.65-81
    • /
    • 2021
  • 본 연구에서는 LIS(Land Information System)를 기반으로 구축된 K-LIS(Korea-Land surface Information System)의 KLDAS(Korea Land Data Assimilation System)를 사용하여 남한 전역을 대상으로 토양수분 및 증발산량을 산출하였다. K-LIS를 구동하고, KLDAS를 구축하기 위해 사용된 수문기상 데이터 세트는 MERRA-2(Modern-Era Retrospective analysis for Research and Applications, version 2), GDAS(Global Data Assimilation System) 그리고 종관기상관측(ASOS, Automated Synoptic Observing System) 자료이다. ASOS는 지점 자료이므로 KLDAS에 적용하기 위해 0.125°의 공간해상도를 가진 격자형 자료로 변환하였다(ASOS-S, ASOS-Spatial). KLDAS에 적용된 수문기상 데이터 세트를 지상관측자료(ASOS)와 비교한 결과 ASOS-S, MERRA-2, GDAS의 R2 평균은 각각 온도(0.994, 0.967, 0.975), 기압(0.995, 0.940, 0.942), 습도(0.993, 0.895, 0.915), 강우량(0.897, 0.682, 0.695)으로 분석되었다. 또한, 토양수분의 R2 평균은 ASOS-S(0.493), MERRA-2(0.56), GDAS(0.488)이며, 증발산량의 R2 평균은 ASOS-S(0.473), MERRA-2(0.43), GDAS(0.615)로 분석되었다. MERRA-2, GDAS는 다수의 위성 및 지상관측자료를 활용하여 품질관리된 데이터 세트인 반면, ASOS-S는 103개 지점의 관측자료를 사용한 격자 자료이다. 따라서, 관측자료간 거리 차이로 인한 오차가 발생하여 정확도가 낮아진 것으로 판단되며, 향후 ASOS보다 많은 지점의 관측자료를 확보하여 적용한다면 격자화로 인한 오차가 줄어들어 정확도가 높아질 것으로 판단된다.

Accuracy Assessment of Precipitation Products from GPM IMERG and CAPPI Ground Radar over South Korea

  • Imgook Jung;Sungwon Choi;Daeseong Jung;Jongho Woo;Suyoung Sim;Kyung-Soo Han
    • 대한원격탐사학회지
    • /
    • 제40권3호
    • /
    • pp.269-274
    • /
    • 2024
  • High-quality precipitation data are crucial for various industries, including disaster prevention. In South Korea, long-term high-quality data are collected through numerous ground observation stations. However, data between these stations are reprocessed into a grid format using interpolation methods, which may not perfectly match actual precipitation. A prime example of real-time observational grid data globally is the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM IMERG) from National Aeronautics and Space Administration (NASA), while in South Korea, ground radar data are more commonly used. GPM and ground radar data exhibit distinct differences due to their respective processing methods. This study aims to analyze the characteristics of GPM and Constant Altitude Plan Position Indicator(CAPPI),representative real-time grid data, by comparing them with ground-observed precipitation data. The study period spans from 2021 to 2022, focusing on hourly data from Automated Synoptic Observing System (ASOS) sites in South Korea. The GPM data tend to underestimate precipitation compared to ASOS data, while CAPPI shows errors in estimating low precipitation amounts. Through this comparative analysis, the study anticipates identifying key considerations for utilizing these data in various applied fields, such as recalculating design rainfall, thereby aiding researchers in improving prediction accuracy by using appropriate data.

A Study of Wind Characteristics around Nuclear Power Plants Based on the Joint Distribution of the Wind Direction and Wind Speed

  • Yunjong Lee
    • 방사선산업학회지
    • /
    • 제17권3호
    • /
    • pp.299-307
    • /
    • 2023
  • Given that toxic substances are diffused by the various movements of the atmosphere, it is very important to evaluate the risks associated with this phenomenon. When analyzing the behavioral characteristics of these atmospheric diffusion models, the main input data are the wind speed and wind direction among the meteorological data. In particular, it is known that a certain wind direction occurs in summer and winter in Korea under the influence of westerlies and monsoons. In this study, synoptic meteorological observation data provided by the Korea Meteorological Administration were analyzed from January 1, 2012 to the end of August of 2022 to understand the regional wind characteristics of nuclear power plants and surrounding areas. The selected target areas consisted of 16 weather stations around the Hanbit, Kori, Wolsong, Hanul, and Saeul nuclear power plants that are currently in operation. The analysis was based on the temperature, wind direction, and wind speed data at those locations. Average, maximum, minimum, median, and mode values were analyzed using long-term annual temperature, wind speed, and wind direction data. Correlation coefficient values were also analyzed to determine the linear relationships among the temperature, wind direction, and wind speed. Among the 16 districts, Uljin had the highest wind speed. The median wind speed values for each region were lower than the average wind speed values. For regions where the average wind speed exceeds the median wind speed, Yeongju, Gochang, Gyeongju, Yeonggwang, and Gimhae were calculated as 0.69 m s-1, 0.54m s-1, 0.45m s-1, 0.4m s-1, and 0.36m s-1, respectively. The average temperature in the 16 regions was 13.52 degrees Celsius; the median temperature was 14.31 degrees and the mode temperature was 20.69 degrees. The average regional temperature standard deviation was calculated and found to be 9.83 degrees. The maximum summer temperatures were 39.7, 39.5, and 39.3 in Yeongdeok, Pohang, and Yeongcheon, respectively. The wind directions and speeds in the 16 regions were plotted as a wind rose graph, and the characteristics of the wind direction and speed of each region were investigated. It was found that there is a dominant wind direction correlated with the topographical characteristics in each region. However, the linear relationship between the wind speed and direction by region varied from 0.53 to 0.07. Through this study, by evaluating meteorological observation data on a long-term synoptic scale of ten years, regional characteristics were found.

하천 수위 예측 모델을 위한 기상 데이터 비교 연구 (Comparative study of meteorological data for river level prediction model)

  • 조민우;윤진욱;김창수;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.491-493
    • /
    • 2022
  • 세계 각지에서 집중호우, 태풍 등으로 인한 홍수 피해가 많이 발생하고 있으며, 이러한 피해를 줄이기 위해 홍수를 미리 예측하는 것은 수해 피해 관리 차원에서 필수적인 요소이다. 본 논문에서는 홍수예측을 위한 핵심 파라미터인 수위, 강수량, 그리고 습도 데이터를 입력 데이터로 활용한 수위 예측 모델을 제안한다. 많은 연구 분야에서 이미 시계열 데이터 예측 성능이 검증된 LSTM 및 GRU 모델을 기반으로 기상청에서 제공하는 종관기상관측 자료와, 방재기상관측 자료를 활용하여 입력 데이터셋을 다르게 구축하고, 성능 비교 실험을 진행하였다. 결과적으로 종관기상관측 자료를 사용했을 때 가장 좋은 결과를 얻었다. 본 논문을 통해 입력 데이터에 따른 성능 비교 실험을 진행하였고, 향후 연구로 홍수 위험도 판별 모델과 연계하여 사전에 대피 결정이 가능한 시스템 개발의 초기 연구로서 활용될 수 있을 것으로 사료된다.

  • PDF