• Title/Summary/Keyword: automated simulation

Search Result 525, Processing Time 0.025 seconds

A Study on Human-Robot Interface based on Imitative Learning using Computational Model of Mirror Neuron System (Mirror Neuron System 계산 모델을 이용한 모방학습 기반 인간-로봇 인터페이스에 관한 연구)

  • Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.565-570
    • /
    • 2013
  • The mirror neuron regions which are distributed in cortical area handled a functionality of intention recognition on the basis of imitative learning of an observed action which is acquired from visual-information of a goal-directed action. In this paper an automated intention recognition system is proposed by applying computational model of mirror neuron system to the human-robot interaction system. The computational model of mirror neuron system is designed by using dynamic neural networks which have model input which includes sequential feature vector set from the behaviors from the target object and actor and produce results as a form of motor data which can be used to perform the corresponding intentional action through the imitative learning and estimation procedures of the proposed computational model. The intention recognition framework is designed by a system which has a model input from KINECT sensor and has a model output by calculating the corresponding motor data within a virtual robot simulation environment on the basis of intention-related scenario with the limited experimental space and specified target object.

Development of an Automated Integrated Design System for Gerotor Pumps with Multiple Profiles(Ellipse and Involute) (타원.인벌루트 조합 형상을 갖는 지로터 펌프의 통합적 설계 자동화 시스템 개발)

  • Moon, Hyun-Ki;Jung, Sung-Yuen;Bae, Jun-Ho;Chang, Young-June;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.67-77
    • /
    • 2010
  • An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobe with elliptical and involute shapes, while the inner rotor profile is determined as conjugate to the other. And the integrated design system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance plus CFD-ACE+. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. CFD simulation results show trends similar to those carried out in experiments, and a quantitative comparison is presented. Results obtained from the automotive integrated design system enable the designer and manufacturer of oil pump to be more efficient in this field.

Illumination and Rotation Invariant Object Recognition (조명 영향 및 회전에 강인한 물체 인식)

  • Kim, Kye-Kyung;Kim, Jae-Hong;Lee, Jae-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.1-8
    • /
    • 2012
  • The application of object recognition technology has been increased with a growing need to introduce automated system in industry. However, object transformed by noises and shadows appeared from illumination causes challenge problem in object detection and recognition. In this paper, an illumination invariant object detection using a DoG filter and adaptive threshold is proposed that reduces noises and shadows effects and reserves geometry features of object. And also, rotation invariant object recognition is proposed that has trained with neural network using classes categorized by object type and rotation angle. The simulation has been processed to evaluate feasibility of the proposed method that shows the accuracy of 99.86% and the matching speed of 0.03 seconds on ETRI database, which has 16,848 object images that has obtained in various lighting environment.

Virtual Power Plant System using OpenADR2.0 and TASE.2 for Integrated Management of Distributed Energy Resource (분산자원 통합 관리를 위한 OpenADR2.0 및 TASE.2 기반 가상발전소 시스템)

  • Seo, Jong Kwan;Lee, Tae Il;Lee, Whee Sung;Park, Jeom Bae
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.311-318
    • /
    • 2020
  • A virtual power plant is a kind of software power plant that enables participation in power operation by integrally managing individual distributed resources. This paper proposes a common information communication architecture based on the TASE.2 standard and the OpenADR2.0 standard to operate a virtual power plant as a single power system. ESS is designed TASE.2 SBO devices that related objects are mapped to OpenADR2.0 services and composed as a single sequence type. Through simulation verification, it conforms data exchange and operation based on both standards.

Optimal Path Planning in Redundant Sealing Robots (여유자유도 실링 로봇에서의 최적 경로 계획)

  • Sung, Young Whee;Chu, Baeksuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1911-1919
    • /
    • 2012
  • In this paper, we focus on a robotic sealing process in which three robots are used. Each robot can be considered as a 7 axis redundant robot of which the first joint is prismatic and the last 6 joints are revolute. In the factory floor, robot path planning is not a simple problem and is not automated. They need experienced operators who can operate robots by teaching and playing back fashion. However, the robotic sealing process is well organized so the relative positions and orientations of the objects in the floor and robot paths are all pre-determined. Therefore by adopting robotic theory, we can optimally plan robot pathes without using teaching. In this paper, we analyze the sealing robot by using redundant manipulator theory and propose three different methods for path planning. For sealing paths outside of a car body, we propose two methods. The first one is resolving redundancy by using pseudo-inverse of Jacobian and the second one is by using weighted pseudo-inverse of Jacobian. The former is optimal in the sense of energy and the latter is optimal in the sense of manipulability. For sealing paths inside of a car body, we must consider collision avoidance so we propose a performance index for that purpose and a method for optimizing that performance index. We show by simulation that the proposed method can avoid collision with faithfully following the given end effector path.

A Study on Three-Dimensional Image Modeling and Visualization of Three-Dimensional Medical Image (삼차원 영상 모델링 및 삼차원 의료영상의 가시화에 관한 연구)

  • Lee, Kun;Gwun, Oubong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.27-34
    • /
    • 1997
  • 3-D image modeling is in high demand for automated visual inspection and non-destructive testing. It also can be useful in biomedical research, medical therapy, surgery planning, and simulation of critical surgery (i.e. cranio-facial). Image processing and image analysis are used to enhance and classify medical volumetric data. Analyzing medical volumetric data is very difficult In this paper, we propose a new image modeling method based on tetrahedrization to improve the visualization of three-dimensional medical volumetric data. In this method, the trivariate piecewise linear interpolation is applied through the constructed tetrahedral domain. Also, visualization methods including iso-surface, color contouring, and slicing are discussed. This method can be useful to the correct and speedy analysis of medical volumetric data, because it doesn't have the ambiguity problem of Marching Cubes algorithm and achieves the data reduction. We expect to compensate the degradation of an accuracy by using an adaptive sub-division of tetrahedrization based on least squares fitting.

  • PDF

AN OPTIMIZATION OF ONEBODY TYPE IMPLANT SYSTEM CONSIDERING VARIOUS DESIGN PARAMETERS (다양한 설계변수를 고려한 수직하중을 받는 일체형 임플랜트의 최적설계)

  • Choi Jae-Min;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.185-196
    • /
    • 2006
  • Statement of problem: The researches on the influence of design variables on the stress distribution in cortical and trabecular bones and on optimal design for implant system were limited. Purpose: The purpose of this study is to identify the sensitivities of design parameters and to suggest the optimal parameters for designing the onebody type implant system. Material and methods: Stresses arising in the implant system were obtained by finite element analysis using a three dimensional model. An onebody type implant system[Oneplant (Warrantec. Co. Ltd., Korea)] was considered in this study. Vortical load(150 N) was applied on the top of the abutment along the axial direction. The initial design variables set for sensitivity analysis were radius of fixture, numbers of micro thread, numbers of power thread, height of micro thread, future length, tapered angle of future, inclined angle of thread, width of micro thread and width of power thread. The statistical technique of Design of Experiments(DOE) was applied tn the simulation model to deduce effective design parameters on stress distributions in bones. The deduced design parameters were incorporated into a fully automated design tool which is coupled with the finite element analysis and numerical optimization to determine the optimal design parameters. Results: 1. The result of sensitivity analysis showed six design variables - radius of future, tapered angle of fixture, inclined angle of thread, numbers of power thread, numbers of micro thread and height of micro thread - were more influential than the others. 2. The optimal values of design variables can be deduced by coupling finite element analysis (FEA) and design optimization tool(DOT).

A Study on Mitigation of Container Terminal Congestion under IoT Environment (IoT 환경에서 컨테이너 터미널 혼잡도 완화방안 연구)

  • Lee, Jang-Kun;Shin, Jae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.57-58
    • /
    • 2018
  • As interest in the Internet of Things increases, technologies are being studied to handle information exchanged between things using the Internet of Things. Specially, as container terminals are automated, the use of the Internet of Things in the terminals increases and varies. However, the use of the Internet of Things to enhance the efficiency of the container terminal operation is insufficient. Currently, the container terminal shows that the arrival pattern of the external truck is concentrated at a particular time. This resuls in gate congestion and affects the waiting times of the truck. The damage is caused by environmental pollution problems and social problems in neighboring port areas. Therefore, in this thesis, we will analyze the causes of the external truck's waiting time problems affecting the gate congestion at container terminals and study methods to mitigate congestion under Internet of Things environment.

  • PDF

A Study on the Pattern Matching Algorithm of 3D Coordinates for Quality Control in Ship Blocks (선박블록의 정도관리를 위한 3차원 좌표의 패턴매칭 알고리즘에 대한 연구)

  • Lee, Ho Cheol;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.933-939
    • /
    • 2012
  • In general, the three-dimensional(3D) coordinates of the manufactured ship blocks are measured using the laser measuring equipment by ship engineers. But, many deflections between the measured coordinates in manufactured step and the designed coordinates in the design step are occurred because of the measuring process of ship blocks manually. Thus, the ship engineer should conform the consistency between the measured coordinates and the designed coordinates step by step, and it largely causes the loss of manpower and time. In this paper, the automated pattern matching algorithm of 3D coordinates for quality control in ship blocks is suggested in order to solve this problem, and the performance of the algorithm is analyzed using the 3D coordinates simulation software developed by our research laboratory. The coordinates matching rate of the measured coordinates in the single/multi ship block(s) is about 90.2% under the tolerated distance error range is 20~25cm.

Location-based Frequency Interference Management Scheme Using Fingerprinting Localization Algorithms (Fingerprinting 무선측위 알고리즘을 이용한 영역 기반의 주파수 간섭 관리 기법)

  • Hong, Aeran;Kim, Kwangyul;Yang, Mochan;Oh, Sunae;Jung, Hongkyu;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.901-908
    • /
    • 2012
  • In an intelligent automated manufacturing environment, an administrator may use M2M (Machine-to-Machine) communication to recognize machine movement and the environment, as well as to respond to any potential dangers. However, commonly used wireless protocols for this purpose such WLAN (Wireless Local Area Network), ZigBee, and Bluetooth use the same ISM (Industrial Science Medical) band, and this may cause frequency interference among different devices. Moreover, an administrator is frequently exposed to dangerous conditions as a result of being surrounded by densely distributed moving machines. To address this issue, we propose in this paper to employ a location-based frequency interference management using fingerprinting scheme in industrial environments and its advanced localization schemes based on k-NN (Nearest Neighbor) algorithms. Simulation results indicate that the proposed schemes reduce distance error, frequency interference, and any potential danger may be responded immediately by continuous tracing of the locations.