• Title/Summary/Keyword: autobody

Search Result 35, Processing Time 0.018 seconds

Assessment of total is ocyanates by OSHA and NIOSH analytical methods : accuracy and precision and airborne concentrations by process (NIOSH와 OSHA 측정 방법을 이용한 이소시아네이트류 발생 공정별 농도 분포 평가)

  • Kang, Hyoung Kyoung;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.1-18
    • /
    • 1999
  • The purpose of this study was to compare performances of two analytical methods, the OSHA 42 and the NIOSH 5522, of quantifying total isocyanates in air. These methods were compared in terms of accuracy and precision and the detection limits using four(4) spiked samples in each of four(4) concentration levels which ranged from 0.25 to 2.0 times of the ACGIH TLV-TWA. In addition, two methods were used to as sess airborne concentrations of total isocyanates at the following processes including autobody spray painting, furniture spray painting, polyurethane foaming, urethane adhesion, UV coating, and pigment mixing. The results of this study showed that the NIOSH 5522 method was better than the OSHA 42 method in terms of accuracy, precis ion, and detection limit for quantifying airborne total isocyanates. It was also clear that the NIOSH method was capable of detecting not only monomeric but also non-monomeric isocyanates. The results of air concentrations of total isocyanates among processes studied indicate that some processes may exceed the recommended level of isocyanates. In addition, to evaluate toxicological effects of total isocyanates, it is recommended to consider additive effects of isocyanates present in mixtures.

  • PDF

Manufacturing Automobile Member Part by Multi-Stage Simulation (다공정 성형 해석에 의한 자동차 멤버 부품 개발)

  • Park C. D.;Chung W. J.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.71-78
    • /
    • 2004
  • Most of member parts have experienced severe springback problems because of their open shape Now it becomes imperative to develop an effective method, which can resolve these problems. However, there remain several obstacles to get accurate estimation of shape error. In analysis, we have to analyze the total process including forming, trimming and flanging. Furthermore, it is another challenge to compare the computed result with the real shape. In this study we developed an analysis program for the springback analysis. We could achive a big enhancement in computation time in springback analysis by using latest equation solving technique and could get a more robust solution conversence by contination method. We have approached this problem in two steps. In the first step, we analyzed forming stage to solve tearing and wrinkling problems. In the second step, we have analyzed full process and have done springback analysis with the same boundary condition as field measuring conditions. We have investigated the accuracy of springback analysis in terms of gap and flush used for insfection of real autobody panels. We found good and effective agreement with the observed results.

  • PDF

Resistance Spot Welding Characteristics of Mg Alloy Applying Current Waveform Control (전류 파형 제어를 적용한 마그네슘 합금의 저항 점 용접 특성)

  • Choi, Dong-Soon;Hwang, In-Sung;Kim, Dong-Cheol;Ryu, Jae-Wook;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.70-75
    • /
    • 2014
  • In automotive industry, applying of Mg alloy to autobody has been issued recently as a light metal. But poor resistance spot weldability of Mg alloy is blocking commercialization. So studies on improving resistance spot weldability of Mg alloy is increasing continuously. For reduce loss of heat input during welding, inverter DC power source is considered because of short rise time to target welding current. But rapid rising of welding current can increase temperature rapidly in nugget and oxide film between electrode and base metal, and that causes generating expulsion on low welding current range. In this study, for increase optimum welding current range and prevent generating expulsion, applicate various types of welding current waveform controls during resistance spot welding. For analysis effects of each current waveform control, acceptable welding current regions according to electrode force and welding time is determined and lobe diagram is derived. In result, pre heat is proposed as optimum type of welding current waveform control.

An Estimative Model of Spot Weld Failure-1. Failure Criteria (점 용접점 파단의 정량적 모델-1. 파단조건식)

  • Lee, T.S.;Lee, H.Y.;Shin, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.40-52
    • /
    • 1998
  • A good grasp of the failure mechanisms of resistance spot weld, widely used in joining the auto-panels, in essential to the structural/crashworthy analyses and integrity assessment of the whole auto-body. In this study, We provide an estimative model describing the failure behavior of resistance spotf weld, and apply the model to the finite element analysis of crashworthiness. First, in "Part 1-Failure Criteria", to be used for the finite element analysis of spot-welded structural panels of an auto-body, (i) a methodology for quantifying the spot weld failure and the accompanying failure criteria are presented, and (ii) the coefficients of the failure equation are determined by a munimum number of appropriate experimental tests. To achieve these, we derive the functional form of the failure envelop by limit analysis, and correlate it with the form in PAM-$CRASH^{TM}$ code, and also investigate the effect of the failure coefficients on the failure envelop form. An estimative model obtained in this Part1, as spot weld failure criteria is applied to the Macroscopic finite element analysis of autobody structural panels using PAM-$CRASH^{TM}$ code in Part 2.

  • PDF

Step-wise Combinded Implicit/Explicit Finite Element Simulation of Autobody Stamping Processes (차체 스템핑공정을 위한 스텝형식의 내연적/외연적 결함 유한요소해석)

  • Jung, D.W.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.86-98
    • /
    • 1996
  • An combined implicit/explicit scheme for the analysis of sheet forming problems has been proposed in this work. In finite element simulation of sheet metal forming processes, the robustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry and boundary conditions. The implicit scheme dmploys a more reliable and rigorous scheme in considering the equilibrium at each step of deformation, while in the explict scheme the problem of convergency is elimented at thecost of solution accuracy. The explicit approach and the implicit approach have merits and demerits, respectively. In order to combine the merits of these two methods a step-wise combined implici/explicit scheme has been developed. In the present work, the rigid-plastic finite element method using bending energy augmented membraneelements(BEAM)(1) is employed for computation. Computations are carried out for some typical sheet forming examples by implicit, combined implicit/explicit schemes including deep drawing of an oil pan, front fender and fuel tank. From the comparison between the methods the advantages and disadvantages of the methods are discussed.

  • PDF