• Title/Summary/Keyword: auto-ignition

Search Result 147, Processing Time 0.03 seconds

A Study on Replay Experiments and Thermal Analysis for Autoignition Phenomenon of Shredded Waste Tires (폐타이어 분쇄물의 자연발화현상에 대한 재연실험 및 열분석에 관한 연구)

  • Koh, Jae Sun;Jang, Man Joon
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.99-108
    • /
    • 2012
  • These days, spontaneous ignition phenomena by oxidizing heat frequently occur in the circumstances of processing and storing waste tires. Therefore, to examine the phenomena, in this work, this researcher conducted the tests of fires of fragmented waste tires (shredded tire), closely investigated components of the fire residual materials collected in the processing and storing place, and analyzed the temperature of the starting of the ignition, weight loss, and heat of reaction. For the study, this researcher conducted fire tests with fragmented waste tires in the range of 2.5 mm to 15 mm, whose heat could be easily accumulated, and performed heat analysis through DSC and TGA, DTA, DTG, and GC/MS to give scientific probability to the possibility of spontaneous ignition. According to the tests, at the 48-hour storage, rapid increase in temperature ($178^{\circ}C$), Graphite phenomenon, smoking were observed. And the result from the DTA and DTG analysis showed that at $166.15^{\circ}C$, the minimum weight loss occurred. And, the result from the test on the waste tire analysis material 1 (Unburnt) through DSC and TGA analysis revealed that at $180^{\circ}C$ or so, thermal decomposition started. As a result, the starting temperature of ignition was considered to be $160^{\circ}C$ to $180^{\circ}C$. And, at $305^{\circ}C$, 10 % of the initial weight of the material reduced, and at $416.12^{\circ}C$, 50 % of the intial weight of the material decreased. The result from the test on oxidation and self-reaction through GC/MS and DSC analysis presented that oxidized components like 1,3 cyclopentnadiene were detected a lot. But according to the result from the heat analysis test on standard materials and fragmented waste tires, their heat value was lower than the basis value so that self-reaction was not found. Therefore, to prevent spontaneous ignition by oxidizing heat of waste tires, it is necessary to convert the conventional process into Cryogenic Process that has no or few heat accumulation at the time of fragmentation. And the current storing method in which broken and fragmented materials are stored into large burlap bags (500 kg) should be changed to the method in which they are stored into small burlap bags in order to prevent heat accumulation.

Review on the Process Safety of $SiH_{4}$ Gas used in Semiconductor and FPD Field (반도체 및 FPD 분야에 사용되는 $SiH_{4}$ 가스의 공정 안전 고찰)

  • Kim, Joung-Cho;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.32-36
    • /
    • 2007
  • When the vacuum system for the process of $SiH_{4}$ gas used in the semiconductor and FPD field is partially vented from vacuum to atmospheric state, a fire often occurs due to auto-ignition of $SiH_{4}$ gas. In order to prevent the fire, the concentration of $SiH_{4}$ should be kept under LFL. This means that the higher capacity pump is needed to meet the process conditions as well as the condition that the concentration of $SiH_{4}$ should be kept under LFL. In this article, we conducted the injection of the dilution gas at the manifold between booster pump and dry pump compared with the typical method that the dilution gas was injected into inlet port of booster pump using computer simulation. According to the result, we can flow further more purge gas for safety without any change of the condition in the process chamber, which means that the higher capacity pump is not required for safety in some cases.

HUGE DIRECT NUMERICAL SIMULATION OF TURBULENT COMBUSTION - TOWARD PERFECT SIMULATION OF IC ENGINE -

  • Tanahashi, Mamoru;Seo, Takehiko;Sato, Makoto;Tsunemi, Akihiko;Miyauchi, Toshio
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.114-125
    • /
    • 2008
  • Current state and perspective of DNS of turbulence and turbulent combustion are discussed with feature trend of the fastest supercomputer in the world. Based on the perspective of DNS of turbulent combustion, possibility of perfect simulations of IC engine is shown. In 2020, the perfect simulation will be realized with 30 billion grid points by 1EXAFlops supercomputer, which requires 4 months CPU time. The CPU time will be reduced to about 4 days if several developments were achieved in the current fundamental researches. To shorten CPU time required for DNS of turbulent combustion, two numerical methods are introduced to full-explicit full-compressible DNS code. One is compact finite difference filter to reduce spatial resolution requirements and numerical oscillations in small scales, and another is well-known point-implicit scheme to avoid quite small time integration of the order of nanosecond for fully explicit DNS. Availability and accuracy of these numerical methods have been confirmed carefully for auto-ignition, planar laminar flame and turbulent premixed flames. To realize DNS of IC engine with realistic kinetic mechanism, several DNS of elemental combustion process in IC engines has been conducted.

Visualization of Diesel and GTL Spray Combustion and Soot Formation in a Rapid Charging Combustion Vessel with Shadowgraph Method

  • Kim, Ki-Seong;Azimov, Ulugbek;Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1019-1029
    • /
    • 2008
  • In this study, visual investigation of sprays and flames has been performed and soot formation in Diesel and GTL fuels has been compared in a specially designed Rapid Charging Combustion Vessel (RCCV) under various ambient gas $O_2$ concentrations and two injection pressures. It has been concluded that soot in the mixing-controlled combustion of Diesel and GTL fuels has similar tendency to be formed in the leading portion of the jet boundaries. Auto-ignition delay for GTL fuel is shorter than that for diesel fuel. The temporal and special variation of soot concentration in the diesel flame jets at various $O_2$ concentrations was correlated with the heat release rate. Soot concentration appears in the regions when diffusion combustion starts, and its concentration reaches maximum at the peak of heat release curve and then decreases due to oxidation. Visualization by shadowgraph method showed that soot decreases with lower $O_2$ concentration, and higher injection pressure.

An Investigation on the Effect of Fuel Stratification of DME/n-Butane mixture on Reduction of Pressure Rise-Rate in HCCI Combustion (DME/n-Butane 혼합 연료의 농도 성층화에 의한 HCCI엔진연소의 압력 상승률 저감에 관한 연구)

  • Lim, Ock-Taeck;Park, Kyu-Yeol
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.39-46
    • /
    • 2011
  • This study investigates the effects of the DME and n-Butane mixture and of the stratification on combustion characteristics of HCCI engine by chemical reaction calculation. First, the existing DME reaction scheme and n-Butane is combined to make new chemical reaction model, then validating the effectiveness of new scheme. Furthermore, this study verify the HCCI combustion characteristics according to the changes of DME and n-Butane mixture ratio, which shows different auto ignition characteristics. Finally, it confirms the effects of stratification of mixture fuel on the reduction of pressure rise rate.

Huge Direct Numerical Simulation of Turbulent Combustion-Toward Perfect Simulation of IC Engine-

  • Tanahashi, Mamoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.359-366
    • /
    • 2008
  • Current state and perspective of DNS of turbulence and turbulent combustion are discussed with feature trend of the fastest supercomputer in the world. Based on the perspective of DNS of turbulent combustion, possibility of perfect simulations of IC engine is shown. In 2020, the perfect simulation will be realized with 30 billion grid points by 1EXAFlops supercomputer, which requires 4 months CPU time. The CPU time will be reduced to about 4 days if several developments were achieved in the current fundamental researches. To shorten CPU time required for DNS of turbulent combustion, two numerical methods are introduced to full-explicit full-compressible DNS code. One is compact finite difference filter to reduce spatial resolution requirements and numerical oscillations in small scales, and another is well-known point-implicit scheme to avoid quite small time integration of the order of nanosecond for fully explicit DNS. Availability and accuracy of these numerical methods have been confirmed carefully for auto-ignition, planar laminar flame and turbulent premixed flames. To realize DNS of IC engine with realistic kinetic mechanism, several DNS of elemental combustion process in IC engines has been conducted.

  • PDF

Huge Direct Numerical Simulation of Turbulent Combustion - Toward Perfect Simulation of IC Engine -

  • Tanahashi, Mamoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.359-366
    • /
    • 2008
  • Current state and perspective of DNS of turbulence and turbulent combustion are discussed with feature trend of the fastest supercomputer in the world. Based on the perspective of DNS of turbulent combustion, possibility of perfect simulations of IC engine is shown. In 2020, the perfect simulation will be realized with 30 billion grid points by 1EXAFlops supercomputer, which requires 4 months CPU time. The CPU time will be reduced to about 4 days if several developments were achieved in the current fundamental researches. To shorten CPU time required for DNS of turbulent combustion, two numerical methods are introduced to full-explicit full-compressible DNS code. One is compact finite difference filter to reduce spatial resolution requirements and numerical oscillations in small scales, and another is well-known point-implicit scheme to avoid quite small time integration of the order of nanosecond for fully explicit DNS. Availability and accuracy of these numerical methods have been confirmed carefully for auto-ignition, planar laminar flame and turbulent premixed flames. To realize DNS of IC engine with realistic kinetic mechanism, several DNS of elemental combustion process in IC engines has been conducted.

  • PDF

Preheated Air Combustion Characteristics of Partially Premixed Flame (부분 예혼합 화염의 예열공기 연소특성)

  • Lee, Seung-Young;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.65-70
    • /
    • 2001
  • OH radical and NOx have been measured in a methane-air partially premixed flame using PLIF technique to define preheated air combustion characteristics. The temperature of mixture is determined by 300K, 400K, 600K and 800K below the auto-ignition temperature respectively. Flame height increases as equivalence ratio increased. As initial enthalpy is supplied, the radius of flame was increased and much amount of yellow flame in rich equivalence ratio was observed. This is due to the faster burning velocity. Also initial oxidization begins earlier as the initial temperature of mixture increased. It means that height of premixed flame front decreased. This phenomenon can be observed OH PLIF image. The qualitative analysis of OH concentration in the PLIF image shows that overall OH concentration increases with equivalence ratio and the initial temperature of mixture increased. At the preheating temperature goes up, axial gradient of OH concentration is less steep than that of lower temperature condition. This may identify that combustion reacts continuously, so preheated air combustion can evade the local heating and make high temperature indiscriminately in the overall reaction zone.

  • PDF

Simulation of SI-HCCI Transition in a Two-Stroke Free Piston Engine Fuelled with Hydrogen (수소 2행정 프리피스톤엔진의 SI-HCCI 변화에 관한 수치해석적 연구)

  • Hung, Nguyen Ba;Park, Kyuel;Lim, Ocktaeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.472-479
    • /
    • 2013
  • A free piston linear engine could be operated under HCCI combustion due to its variable compression ratios. To obtain HCCI combustion, the free piston linear engine needs a high compression ratio to achieve auto-ignition of the fuel/air mixture. In this study, an idea for obtaining a high compression ratio using the transition from SI combustion to HCCI combustion was proposed. The fuel used in this study is hydrogen, which is considered to be an environmentally friendly fuel. Besides, the effects of key parameters such as equivalence ratio (${\phi}$), load resistance ($R_L$) and intake temperature ($T_{in}$) on the SI-HCCI transition were numerically investigated. The simulation results show that the SI-HCCI transition is successful without any significant reduction of in-cylinder pressure as the intake temperature is increased from $T_{in}$=300K (SI mode) to $T_{in}$=450K (HCCI mode), while the load resistance and equivalence ratio are retained respectively at $R_L=120{\Omega}$ and ${\phi}$=0.6 in both SI mode and HCCI mode.

A Study on Thermal Characteristics and Ignitability of Dead Leaves and Living Leaves for Main Species of Trees in Youngdong Areas (영동지역의 주요 수종별 낙엽과 생업의 열적특성 및 발화특성에 관한 연구)

  • Lee, Hae-Pyeong;Lee, Si-Young;Park, Young-Ju
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2009
  • In order to inspect the danger of forest fires, the thermal characteristics and the ignitability of the dead leaves and the living leaves for the main species of trees in Youngdong areas have been studied by the TG/DTA and the group flammability tester. From this work, the thermal delay has been increased with the increase of the heating rate. The fractions of the thermal weight loss for the dead leaves and the living leaves of the coniferous trees were higher than those of the broadleaf trees. Also, it was confirmed that the ignitable dangers of the dead leaves and the coniferous trees were higher than those of the living leaves and the broadleaf trees, due to the low auto ignition temperature and thermal resistance.