• 제목/요약/키워드: auto-guiding

검색결과 24건 처리시간 0.021초

A NEW AUTO-GUIDING SYSTEM FOR CQUEAN

  • CHOI, NAHYUN;PARK, WON-KEE;LEE, HYE-IN;JI, TAE-GEUN;JEON, YISEUL;IM, MYUNGSHI;PAK, SOOJONG
    • 천문학회지
    • /
    • 제48권3호
    • /
    • pp.177-185
    • /
    • 2015
  • We develop a new auto-guiding system for the Camera for QUasars in the EArly uNiverse (CQUEAN). CQUEAN is an optical CCD camera system attached to the 2.1-m Otto-Struve Telescope (OST) at McDonald Observatory, USA. The new auto-guiding system differs from the original one in the following: instead of the cassegrain focus of the OST, it is attached to the finder scope; it has its own filter system for observation of bright targets; and it is controlled with the CQUEAN Auto-guiding Package, a newly developed auto-guiding program. Finder scope commands a very wide field of view at the expense of poorer light gathering power than that of the OST. Based on the star count data and the limiting magnitude of the system, we estimate there are more than 5.9 observable stars with a single FOV using the new auto-guiding CCD camera. An adapter is made to attach the system to the finder scope. The new auto-guiding system successfully guided the OST to obtain science data with CQUEAN during the test run in 2014 February. The FWHM and ellipticity distributions of stellar profiles on CQUEAN, images guided with the new auto-guiding system, indicate similar guiding capabilities with the original auto-guiding system but with slightly poorer guiding performance at longer exposures, as indicated by the position angle distribution. We conclude that the new auto-guiding system has overall similar guiding performance to the original system. The new auto-guiding system will be used for the second generation CQUEAN, but it can be used for other cassegrain instruments of the OST.

Performance of KHU Auto-guiding Package for McDonald 82 inch Telecope (KAP82)

  • Lee, Hye-In;Pak, Soojong;Ji, Tae-Geun;Im, Myungshin
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.52.2-52.2
    • /
    • 2015
  • In astronomical observations, stable auto-guiding and accurate target centering capabilities are critical to increase observation efficiency and sensitivity. Recently, Center for the Exploration of the Origin of the Universe (CEOU) has developed SQUEAN (SED camera for QUasars in EArly uNiverse). SQUEAN is installed and had successful observations at the 82 inch Otto Struve Telescope of McDonald Observatory in 2015 February. We have upgraded the existing auto-guiding softwares to KAP82 (KHU Auto-guiding Package for the McDonald 82 inch Telescope). Keeping the original hardware systems and the software algorithms of CAP (CQUEAN Auto-guiding Package), KAP 82 is completely re-written in Visual C++. We developed several center finding algorithms, e.g., 2D-gaussian fitting and weighted mean methods. In this presentation, we compare the auto-guiding performances with these algorithms.

  • PDF

Auto-guiding System for CQUEAN

  • Kim, Eun-Bin;Park, Won-Kee;Jeong, Hyeon-Ju;Kim, Jin-Young;Kim, Dong-Han;Kim, Han-Guen;Kuehne, John;Odoms, Peter S.;Choi, Chang-Su;Im, Myung-Shin;Pak, Soo-Jong
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.61.2-61.2
    • /
    • 2010
  • CQUEAN (Camera for Quasars in EArly uNiverse) is an optical CCD camera system which has its own auto-guiding system. Guiding system consists of a 1k*1k CCD camera, FLI PL1001E, a flat mirror to feed the image of an off-axis field to the camera and baffle. The whole system lies on a moving arm which rotates 90 degree effectively to enlarge the field of view. A motor, IMS MDRIVE 34, and a differential decelerator, APEX AD140-050, are used for the moving mechanism. Auto-guiding is controlled by Agdr program. We had a first light from Aug. 10 to Aug 17, 2010 at McDonald Observatory, USA. In this presentation, we describe about the auto-guiding system for CQUEAN and its performance on the 2.1m telescope.

  • PDF

AUTO-GUIDING SYSTEM FOR CQUEAN (CAMERA FOR QUASARS IN EARLY UNIVERSE)

  • Kim, Eun-Bin;Park, Won-Kee;Jeong, Hyeon-Ju;Kim, Jin-Young;Kuehne, John;Kim, Dong-Han;Kim, Han-Geun;Odoms, Peter S.;Chang, Seung-Hyuk;Im, Myung-Shin;Pak, Soo-Jong
    • 천문학회지
    • /
    • 제44권4호
    • /
    • pp.115-123
    • /
    • 2011
  • To perform imaging observations of optically red objects such as high redshift quasars and brown dwarfs, the Center for the Exploration of the Origin of the Universe (CEOU) recently developed an optical CCD camera, Camera for QUasars in EArly uNiverse (CQUEAN), which is sensitive at 0.7-1.1 ${\mu}m$. To enable observations with long exposures, we develop an auto-guiding system for CQUEAN. This system consists of an off-axis mirror, a baffle, a CCD camera, a motor and a differential decelerator. To increase the number of available guiding stars, we design a rotating mechanism for the off-axis guiding camera. The guiding field can be scanned along the 10 arcmin ring offset from the optical axis of the telescope. Combined with the auto-guiding software of the McDonald Observatory, we confirm that a stable image can be obtained with an exposure time as long as 1200 seconds.

CQUEAN II System Design: New Auto-guiding System

  • Choi, Nahyun;Lee, Hye-In;Pak, Soojong;Ji, Tae-Geun;Jeong, Byeongjoon;Bae, Min K.;Im, Myungshin
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.83.2-83.2
    • /
    • 2013
  • Camera for QUasars in EArly uNiverse (CQUEAN) is an optical CCD camera developed by the Center for the Exploration of the Origin of the Universe (CEOU). In 2010 August, CQUEAN was attached on the 2.1m Otto Struve Telescope at the McDonald Observatory in Texas, USA. As the main purpose of CQUEAN is detecting the Lyman breaks of redshift ~5 quasars, it is sensitive to near-infrared wavelengths (0.7-1.0 ${\mu}m$). For the auto-guiding system, it is using a rotating guide arm to find guide stars on the Cassegrain off-axis focus of the telescope. We plan to upgrade a new filter wheel system consists of a series of narrow band filters. We will install this independent auto-guiding units on the finder scope, which makes rooms on the Cassegrain focal plane of the main telescope. In this presentation we present the system architecture of the CQUEAN Auto-guiding Package (CAP).

  • PDF

망원경의 자동추적장치를 위한 이산시간 동적모델 분석 (DISCRETE TIME DYNAMIC MODEL FOR TELESCOPE AUTO-GUIDING SYSTEM)

  • 이준화
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권4호
    • /
    • pp.431-450
    • /
    • 2007
  • 천체의 장시간 노출을 위한 망원경 자동추적장치는 CCD 카메라의 성상 관측결과를 피드백하여 제어한다. 그러나 대기 시상효과에 의해 성상 관측의 정확도가 변하면 제어의 정확도도 달라진다. 본 연구에서는 제어공학에서 사용하는 이산시간 동적 이론을 적용하여 자동추적장치의 효율을 극대화 할 수 있는 이론을 개발하였다. 망원경의 추적장치에 기계적인 오차가 있는 경우, CCD 카메라의 성상 관측결과에 나타나는 대기시상 효과를 구체적으로 모델링한 후, 제안된 성능지표에 주는 영향을 수식적으로 유도하고 분석하였다. 그리고 기계적인 오차와 대기시상 값의 이론적인 상관관계를 실제 관측 실험을 수행하여 검증하였다.

Auto-guiding Performance from IGRINS Test Observations (Immersion GRating INfrared Spectrograph)

  • Lee, Hye-In;Pak, Soojong;Le, Huynh Anh N.;Kang, Wonseok;Mace, Gregory;Pavel, Michael;Jaffe, Daniel T.;Lee, Jae-Joon;Kim, Hwihyun;Jeong, Ueejeong;Chun, Moo-Young;Park, Chan;Yuk, In-Soo;Kim, Kangmin
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.92.1-92.1
    • /
    • 2014
  • In astronomical spectroscopy, stable auto-guiding and accurate target centering capabilities are critical to increase the achievement of high observation efficiency and sensitivity. We developed an instrument control software for the Immersion GRating INfrared Spectrograph (IGRINS), a high spectral resolution near-infrared slit spectrograph with (R=40,000). IGRINS is currently installed on the McDonald 2.7 m telescope in Texas, USA. We had successful commissioning observations in March, May, and July of 2014. The role of the IGRINS slit-viewing camera (SVC) is to move the target onto the slit, and to provide feedback about the tracking offsets for the auto-guiding. For a point source, we guide the telescope with the target on the slit. While for an extended source, we use another a guide star in the field offset from the slit. Since the slit blocks the center of the point spread function, it is challenging to fit the Gaussian function to guide and center the target on slit. We developed several center finding algorithms, e.g., 2D-Gaussian Fitting, 1D-Gaussian Fitting, and Center Balancing methods. In this presentation, we show the results of auto-guiding performances with these algorithms.

  • PDF

Auto-Guiding System for McDonald Otto Struve Telescope

  • 김은빈;박원기;김진영;오희영;최장수;박수종;임명신
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.38.1-38.1
    • /
    • 2010
  • McDonald 2.1m Otto Struve Telescope is located in the Davis Mountains, 450 miles west of Austin, Texas. The telescope was built in 1938, but it is still in demand today. CQUEAN (Camera for QUasar in Early uNiverse) will be attached on this telescope and perform Y-band imaging observations. Dynamics study of the telescope shows that tracking errors are 0.1 arcsec/100sec in declination direction and 0.4 arcsec/100sec in R.A. direction. In order to allow a long exposure (> a few minutes) of a target field, we are making auto-guiding system for the 2.1m telescope. The auto-guiding system of CQUEAN will be connected with TCS of the telescope. The expected number of stars on the CCD field (2.97 square arcminutes) is about 1.2 stars which are brighter than magnitude 17.5 in 2.97 square arcminutes. For more effective observation, we plan to implement moving mechanism in guiding system so that guide CCD camera can see wider off-axis fields.

  • PDF

Kyung Hee University Automatic Observing Software for 10 cm Telescope (KAOS10)

  • Kim, Changgon;Han, Jimin;Ji, Tae-Geun;Lee, Hye-In;Pak, Soojong;Im, Myungshim
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.72.3-72.3
    • /
    • 2019
  • The observation of transient objects such as supernovae or variable stars requires a survey of the wide sky and quickly extracting the results. In accordance with this purpose, we have been developing an automatic observing software, KAOS (Kyung Hee University Automatic Observing Software) as a series. KAOS30 was the first series of KAOS and it was applied to the 30-inch platform at the McDonald Observatory in the United States of America. KAOS76 controls the 76-cm telescope at Kyung Hee Astronomical Observatory. In this poster, we introduce KAOS10 for controlling a portable telescope with a small aperture size attaching a guiding camera as QHY-5L II. Kyung Hee University auto-guiding package which includes the auto-guiding function for small aperture size telescope was also developed. Additionally, the Telescope Control Package(TCP) can communicate with the main server to do astrometry for pointing and identifying targets efficiently. KAOS10 has a universal interface that will be useful for the research of both amateurs and professionals.

  • PDF

시설원예용 파이프 유도식 무인방제기 개발 (I) - 무인 주행시스템 - (Development of a Self-Travelling Sprayer for a Greenhouse (I) - Self-travelling -)

  • 김태한;장익주;강춘태
    • Journal of Biosystems Engineering
    • /
    • 제24권3호
    • /
    • pp.209-216
    • /
    • 1999
  • A self-travelling sprayer was developed to avoid the exposure of an operator to agricultural chemicals and exhaust gas, to improve safety and to increase working efficiency during the application and transport work in the greenhouses. This system consists of self-travelling system and the control system for application and safety device. The auto-spray car is equipped with a liquid chemical tank of 80l capacity. The travelling system adopted mechanical steering system which link mechanism of front wheel is guided by guide rollers. The sprayer travels along the guiding pipe which is set on the furrow in the greenhouses. The sprayer stops automatically applying and traveling when the liquid chemical tank becomes empty or when the sprayer reach the turning point. The spray booms swings in a vertical plane. The control system of safety devices controls the automatic stop of the sprayer when there is an obstacle on the traveling path, or when the battery becomes discharged. The auto-spray car traveled smoothly and steadily along the guide pipe during traveling straightly and turning on the ground.

  • PDF