• 제목/요약/키워드: authorship attribution

검색결과 11건 처리시간 0.027초

빈도 정보를 이용한 한국어 저자 판별 (Authorship Attribution in Korean Using Frequency Profiles)

  • 한나래
    • 인지과학
    • /
    • 제20권2호
    • /
    • pp.225-241
    • /
    • 2009
  • 본고에서는 빈도 정보를 이용한 저자 판별 (authorship attribution) 기법을 한국어에 적용한 연구를 소개한다. 그 대상으로는 정형화된 장르인 신문 칼럼을, 구체적으로는 조선일보에 연재 중인 4인 칼럼니스트들의 각 40개 칼럼, 총 160개 칼럼 텍스트를 선정하였다. 이들에 대하여 어절, 음절, 형태소, 각 단위 2연쇄 등의 다양한 언어 단위들의 빈도 정보들을 이용한 저자 판별을 시도한 결과, 형태소 빈도를 기반으로 하여 최고 93%를 넘는 높은 예측 정확도를 얻을 수 있었다. 또한, 저자 개인 문체간의 거리도 빈도 정보로써 계량적 표상이 가능함을 보일 수 있었다. 이로써 빈도 분석과 같은 통계적, 계량적 방법을 통하여 한국어 텍스트에 대한 성공적인 저자 판별과 개인 문체의 정량화가 가능하다는 결론을 내릴 수 있다.

  • PDF

한의학 고문헌 텍스트에서의 저자 판별 - 기능어의 역할을 중심으로 - (A Comparative Study of Feature Extraction Methods for Authorship Attribution in the Text of Traditional East Asian Medicine with a Focus on Function Words)

  • 오준호
    • 대한한의학원전학회지
    • /
    • 제33권2호
    • /
    • pp.51-59
    • /
    • 2020
  • Objectives : We would like to study what is the most appropriate "feature" to effectively perform authorship attribution of the text of Traditional East Asian Medicine Methods : The authorship attribution performance of the Support Vector Machine (SVM) was compared by cross validation, depending on whether the function words or content words, single word or collocations, and IDF weights were applied or not, using 'Variorum of the Nanjing' as an experimental Corpus. Results : When using the combination of 'function words/uni-bigram/TF', the performance was best with accuracy of 0.732, and the combination of 'content words/unigram/TFIDF' showed the lowest accuracy of 0.351. Conclusions : This shows the following facts from the authorship attribution of the text of East Asian traditional medicine. First, function words play an important role in comparison to content words. Second, collocations was relatively important in content words, but single words have more important meanings in function words. Third, unlike general text analysis, IDF weighting resulted in worse performance.

Identifying Mobile Owner based on Authorship Attribution using WhatsApp Conversation

  • Almezaini, Badr Mohammd;Khan, Muhammad Asif
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.317-323
    • /
    • 2021
  • Social media is increasingly becoming a part of our daily life for communicating each other. There are various tools and applications for communication and therefore, identity theft is a common issue among users of such application. A new style of identity theft occurs when cybercriminals break into WhatsApp account, pretend as real friends and demand money or blackmail emotionally. In order to prevent from such issues, data mining can be used for text classification (TC) in analysis authorship attribution (AA) to recognize original sender of the message. Arabic is one of the most spoken languages around the world with different variants. In this research, we built a machine learning model for mining and analyzing the Arabic messages to identify the author of the messages in Saudi dialect. Many points would be addressed regarding authorship attribution mining and analysis: collect Arabic messages in the Saudi dialect, filtration of the messages' tokens. The classification would use a cross-validation technique and different machine-learning algorithms (Naïve Baye, Support Vector Machine). Results of average accuracy for Naïve Baye and Support Vector Machine have been presented and suggestions for future work have been presented.

서바이벌 네트워크 개념을 이용한 저자 식별 프레임워크: 의미론적 특징과 특징 허용 범위 (Authorship Attribution Framework Using Survival Network Concept : Semantic Features and Tolerances)

  • 황철훈;신건윤;김동욱;한명묵
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.1013-1021
    • /
    • 2020
  • 악성코드 저자 식별은 알려진 악성코드 저자의 특징을 이용하여 알려지지 않은 악성코드의 저자 특징과 비교를 통해 악성코드를 식별하기 위한 연구 분야이다. 바이너리를 이용한 저자 식별 방법은 실질적으로 배포된 악성코드를 대상으로 수집 및 분석이 용이하다는 장점을 갖으나, 소스코드를 이용한 방법보다 특징 활용 범위가 제한된다. 이러한 한계점으로 인해 다수의 저자를 대상으로 정확도가 저하된다는 단점을 갖는다. 본 연구는 바이너리 저자 식별에 한계점을 보완하기 위하여 '바이너리로부터 의미론적 특징 정의'와 '서바이벌 네트워크 개념을 이용한 중복 특징에 대한 허용 범위 정의' 방법을 제안한다. 제안한 방법은 바이너리 정보로부터 Opcode 기반의 그래프 특징을 정의하며, 서바이벌 네트워크 개념을 이용하여 저자별 고유 특징을 선택할 수 있는 허용범위를 정의하는 것이다. 이를 통해 저자별 특징 정의 및 특징 선택 방법을 하나의 기술로 정의할 수 있으며, 실험을 통해 선행연구보다 5.0%의 정확도 향상과 함께 소스코드 기반 분석과 동일한 수준의 정확도 도출이 가능함을 확인할 수 있었다.

딥러닝을 활용한 웹 텍스트 저자의 남녀 구분 및 연령 판별 : SNS 사용자를 중심으로 (Authorship Attribution of Web Texts with Korean Language Applying Deep Learning Method)

  • 박찬엽;장인호;이준기
    • 한국IT서비스학회지
    • /
    • 제15권3호
    • /
    • pp.147-155
    • /
    • 2016
  • According to rapid development of technology, web text is growing explosively and attracting many fields as substitution for survey. The user of Facebook is reaching up to 113 million people per month, Twitter is used in various institution or company as a behavioral analysis tool. However, many research has focused on meaning of the text itself. And there is a lack of study for text's creation subject. Therefore, this research consists of sex/age text classification with by using 20,187 Facebook users' posts that reveal the sex and age of the writer. This research utilized Convolution Neural Networks, a type of deep learning algorithms which came into the spotlight as a recent image classifier in web text analyzing. The following result assured with 92% of accuracy for possibility as a text classifier. Also, this research was minimizing the Korean morpheme analysis and it was conducted using a Korean web text to Authorship Attribution. Based on these feature, this study can develop users' multiple capacity such as web text management information resource for worker, non-grammatical analyzing system for researchers. Thus, this study proposes a new method for web text analysis.

빈도 정보를 이용한 저자 판별: 조선일보 4인 칼럼을 대상으로 (Authorship Attribution in Korean Using Chosun Ilbo Column Texts)

  • 한나래
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.29-34
    • /
    • 2008
  • 본고에서는 빈도 정보를 이용한 저자 판별 (authorship attribution) 기법을 한국어에 적용한 연구를 소개한다. 그 대상으로는 정형화된 장르인 신문 칼럼을, 구체적으로는 조선일보에 연재 중인 4인 칼럼니스트들의 각 40개 칼럼, 총 160개 칼럼 텍스트를 선정하였다. 이들에 대하여 어절, 음절, 형태소, 각 단위 2연쇄 등의 다양한 언어 단위들의 빈도 정보들을 이용한 저자 판별을 시도한 결과, 형태소 빈도를 기반으로 하여 최고 93%를 넘는 높은 예측 정확도를 얻을 수 있었다. 또한, 저자 개인 문체간의 거리도 빈도 정보로써 계량적 표상이 가능함을 보일 수 있었다. 이로써 빈도 분석과 같은 통계적, 계량적 방법을 통하여 한국어 텍스트에 대한 성공적인 저자 판별과 개인 문체의 정량화가 가능하다는 결론을 내릴 수 있다.

  • PDF

중복 허용 범위를 고려한 서바이벌 네트워크 기반 안드로이드 저자 식별 (Survival network based Android Authorship Attribution considering overlapping tolerance)

  • 황철훈;신건윤;김동욱;한명묵
    • 인터넷정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.13-21
    • /
    • 2020
  • 안드로이드 저자 식별 연구는 좁은 범위에서는 출처를 밝히기 위한 방법으로 해석할 수 있으나, 넓은 범위에서 본다면 알려진 저작물을 통해 유사한 저작물을 식별하는 통찰력을 얻기 위한 방법으로 해석할 수 있다. 안드로이드 저자 식별 연구에서 발견되는 문제점은 안드로이드 시스템 상 중요한 코드이지만 의미가 없는 코드들로 인하여 저자의 중요한 특징을 찾기 어렵다는 것이다. 이로 인해 합법적인 코드 또는 행동들이 악성코드로 잘못 정의되기도 한다. 이를 해결하기 위하여 서바이벌 네트워크 개념을 도입하여 여러 안드로이드 앱에서 발견되는 특징들을 제거하고 저자별로 정의되는 고유한 특징들을 생존시킴으로써 문제를 해결하고자 하였다. 제안하는 프레임워크와 선행된 연구를 비교하는 실험을 진행하였으며, 440개의 저자가 식별된 앱을 대상으로 실험한 결과에서 최대 92.10%의 분류 정확도를 도출하였고 선행된 연구와 최대 3.47%의 차이를 보였다. 이는 적은 양의 학습데이터를 이용하였으나 저자별 중복된 특징 없이 고유한 특징들을 이용하였기에 선행 연구와 차이가 나타났을 것으로 해석하였다. 또한 특징 정의 방법에 따른 선행 연구와의 비교 실험에서도 적은 수의 특징으로 동일한 정확도를 보일 수 있으며, 이는 서바이벌 네트워크 개념을 통한 지속적으로 중복된 의미 없는 특징을 관리할 수 있음을 알 수 있었다.

SVM 기반 유전 알고리즘을 이용한 컴파일러 분석 프레임워크 : 특징 및 모델 선택 민감성 (Compiler Analysis Framework Using SVM-Based Genetic Algorithm : Feature and Model Selection Sensitivity)

  • 황철훈;신건윤;김동욱;한명묵
    • 정보보호학회논문지
    • /
    • 제30권4호
    • /
    • pp.537-544
    • /
    • 2020
  • 악성코드 기술 발전으로 변이, 난독화 등의 탐지 회피 방법이 고도화되고 있다. 이에 악성코드 탐지 기술에 있어 알려지지 않은 악성코드 탐지 기술이 중요하며, 배포된 악성코드를 통해 저자를 식별하여 알려지지 않은 악성코드를 탐지하는 악성코드 저자 식별 방법이 연구되고 있다. 본 논문에서는 바이너리 기반 저자 식별 방법에 대해 중요 정보인 컴파일러 정보를 추출하고자 하였으며, 연구 간에 특징 선택, 확률 및 비확률 모델, 최적화가 분류 효율성에 미치는 민감성(Sensitive)을 확인하고자 하였다. 실험에서 정보 이득을 통한 특징 선택 방법과 비확률 모델인 서포트 벡터 머신이 높은 효율성을 보였다. 최적화 연구 간에 제안하는 프레임워크를 통한 특징 선택 및 모델 최적화를 통해 높은 분류 정확도를 얻었으며, 최대 48%의 특징 감소 및 51배가량의 빠른 실행 속도라는 결과를 보였다. 본 연구를 통해 특징 선택 및 모델 최적화 방법이 분류 효율성에 미치는 민감성에 대해 확인할 수 있었다.

사람 재식별: 학제간 연구 과제 (People Re-identification: A Multidisciplinary Challenge)

  • 정동선
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권6호
    • /
    • pp.135-139
    • /
    • 2012
  • 인터넷의 확산과 정보 교환, 배포와 수집 기술에 대한 의존도의 증대로 과거와는 비교할 수 없는 대용량의 데이터가 생성되었다. 대용량 데이터를 식별하고 가려내는 작업은 가까운 미래에 오늘날의 컴퓨터 과학의 상당 부분을 새롭게 정의할 것으로 예상된다. 여러 관련 분야에서 반복되는 중요한 과제는 재식별의 문제이다. 광범위한 정의에서, 재식별 문제는 과거에 인식된 객체를 다시 식별하는 문제이다. 예를 들면, 여러 장소에 설치된 감시 카메라에 포착된 어떤 사람을 추적하는 문제가 이에 해당한다. 본 논문에서는 서로 다른 분야에서 이 과제를 어떻게 정의하고, 이 과제를 어떻게 해결하는가에 대해 비교 분석한다. 비디오 감시에서 사람 재식별, 텍스트 샘플에서 저자 식별, 사진 선호도에 따른 사용자 식별 등이 이에 포함된다. 본 논문은 또한 학제간 해결 방안이 장점을 지니는 상황에 대한 비전을 제시한다.

공격자 그룹 특징 추출 프레임워크 : 악성코드 저자 그룹 식별을 위한 유전 알고리즘 기반 저자 클러스터링 (The attacker group feature extraction framework : Authorship Clustering based on Genetic Algorithm for Malware Authorship Group Identification)

  • 신건윤;김동욱;한명묵
    • 인터넷정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.1-8
    • /
    • 2020
  • 최근 악성코드를 활용한 APT(Advanced Persistent Threat) 공격의 수가 점차 증가하면서 이를 예방하고 탐지하기 위한 연구가 활발히 진행되고 있다. 이러한 공격들은 공격이 발생하기 전에 탐지하고 차단하는 것도 중요하지만, 발생 공격 사례 또는 공격 유형에 대한 정확한 분석과 공격 분류를 통해 효과적인 대응을 하는 것 또한 중요하며, 이러한 대응은 해당 공격의 공격 그룹을 분석함으로써 정할 수 있다. 따라서 본 논문에서는 공격자 그룹의 특징을 파악하고 분석하기 위한 악성코드를 활용한 유전 알고리즘 기반 공격자 그룹 특징 추출 프레임워크를 제안한다. 해당 프레임워크에서는 수집된 악성코드를 디컴파일러와 디셈블러를 통해 관련 코드를 추출하고 코드 분석을 통해 저자와 관련된 정보들을 분석한다. 악성코드에는 해당 코드만이 가지고 있는 고유한 특징들이 존재하며, 이러한 특징들은 곧 해당 악성코드의 작성자 또는 공격자 그룹을 식별할 수 있는 특징이라고 할 수 있다. 따라서 우리는 저자 클러스터링 방법을 통해 바이너리 및 소스 코드에서 추출한 다양한 특징들 중에 특정 악성코드 작성자 그룹만이 가지고 있는 특징들을 선별하고, 정확한 클러스터링 수행을 위해 유전 알고리즘을 적용하여 주요 특징들을 유추한다. 또한 각 악성코드 저자 그룹들이 가지고 있는 특성들을 기반으로 각 그룹들만을 표현할 수 있는 특징들을 찾고 이를 통해 프로필을 작성하여 작성자 그룹이 정확하게 군집화되었는지 확인한다. 본 논문에서는 실험을 통해 유전 알고리즘을 활용하여 저자가 정확히 식별되는 지와 유전 알고리즘을 활용하여 주요 특징 식별이 가능한지를 확인 할 것이다. 실험 결과, 86%의 저자 분류 정확도를 보이는 것을 확인하였고 유전 알고리즘을 통해 추출된 정보들 중에 저자 분석에 사용될 특징들을 선별하였다.