본고에서는 빈도 정보를 이용한 저자 판별 (authorship attribution) 기법을 한국어에 적용한 연구를 소개한다. 그 대상으로는 정형화된 장르인 신문 칼럼을, 구체적으로는 조선일보에 연재 중인 4인 칼럼니스트들의 각 40개 칼럼, 총 160개 칼럼 텍스트를 선정하였다. 이들에 대하여 어절, 음절, 형태소, 각 단위 2연쇄 등의 다양한 언어 단위들의 빈도 정보들을 이용한 저자 판별을 시도한 결과, 형태소 빈도를 기반으로 하여 최고 93%를 넘는 높은 예측 정확도를 얻을 수 있었다. 또한, 저자 개인 문체간의 거리도 빈도 정보로써 계량적 표상이 가능함을 보일 수 있었다. 이로써 빈도 분석과 같은 통계적, 계량적 방법을 통하여 한국어 텍스트에 대한 성공적인 저자 판별과 개인 문체의 정량화가 가능하다는 결론을 내릴 수 있다.
Objectives : We would like to study what is the most appropriate "feature" to effectively perform authorship attribution of the text of Traditional East Asian Medicine Methods : The authorship attribution performance of the Support Vector Machine (SVM) was compared by cross validation, depending on whether the function words or content words, single word or collocations, and IDF weights were applied or not, using 'Variorum of the Nanjing' as an experimental Corpus. Results : When using the combination of 'function words/uni-bigram/TF', the performance was best with accuracy of 0.732, and the combination of 'content words/unigram/TFIDF' showed the lowest accuracy of 0.351. Conclusions : This shows the following facts from the authorship attribution of the text of East Asian traditional medicine. First, function words play an important role in comparison to content words. Second, collocations was relatively important in content words, but single words have more important meanings in function words. Third, unlike general text analysis, IDF weighting resulted in worse performance.
International Journal of Computer Science & Network Security
/
제21권7호
/
pp.317-323
/
2021
Social media is increasingly becoming a part of our daily life for communicating each other. There are various tools and applications for communication and therefore, identity theft is a common issue among users of such application. A new style of identity theft occurs when cybercriminals break into WhatsApp account, pretend as real friends and demand money or blackmail emotionally. In order to prevent from such issues, data mining can be used for text classification (TC) in analysis authorship attribution (AA) to recognize original sender of the message. Arabic is one of the most spoken languages around the world with different variants. In this research, we built a machine learning model for mining and analyzing the Arabic messages to identify the author of the messages in Saudi dialect. Many points would be addressed regarding authorship attribution mining and analysis: collect Arabic messages in the Saudi dialect, filtration of the messages' tokens. The classification would use a cross-validation technique and different machine-learning algorithms (Naïve Baye, Support Vector Machine). Results of average accuracy for Naïve Baye and Support Vector Machine have been presented and suggestions for future work have been presented.
악성코드 저자 식별은 알려진 악성코드 저자의 특징을 이용하여 알려지지 않은 악성코드의 저자 특징과 비교를 통해 악성코드를 식별하기 위한 연구 분야이다. 바이너리를 이용한 저자 식별 방법은 실질적으로 배포된 악성코드를 대상으로 수집 및 분석이 용이하다는 장점을 갖으나, 소스코드를 이용한 방법보다 특징 활용 범위가 제한된다. 이러한 한계점으로 인해 다수의 저자를 대상으로 정확도가 저하된다는 단점을 갖는다. 본 연구는 바이너리 저자 식별에 한계점을 보완하기 위하여 '바이너리로부터 의미론적 특징 정의'와 '서바이벌 네트워크 개념을 이용한 중복 특징에 대한 허용 범위 정의' 방법을 제안한다. 제안한 방법은 바이너리 정보로부터 Opcode 기반의 그래프 특징을 정의하며, 서바이벌 네트워크 개념을 이용하여 저자별 고유 특징을 선택할 수 있는 허용범위를 정의하는 것이다. 이를 통해 저자별 특징 정의 및 특징 선택 방법을 하나의 기술로 정의할 수 있으며, 실험을 통해 선행연구보다 5.0%의 정확도 향상과 함께 소스코드 기반 분석과 동일한 수준의 정확도 도출이 가능함을 확인할 수 있었다.
According to rapid development of technology, web text is growing explosively and attracting many fields as substitution for survey. The user of Facebook is reaching up to 113 million people per month, Twitter is used in various institution or company as a behavioral analysis tool. However, many research has focused on meaning of the text itself. And there is a lack of study for text's creation subject. Therefore, this research consists of sex/age text classification with by using 20,187 Facebook users' posts that reveal the sex and age of the writer. This research utilized Convolution Neural Networks, a type of deep learning algorithms which came into the spotlight as a recent image classifier in web text analyzing. The following result assured with 92% of accuracy for possibility as a text classifier. Also, this research was minimizing the Korean morpheme analysis and it was conducted using a Korean web text to Authorship Attribution. Based on these feature, this study can develop users' multiple capacity such as web text management information resource for worker, non-grammatical analyzing system for researchers. Thus, this study proposes a new method for web text analysis.
본고에서는 빈도 정보를 이용한 저자 판별 (authorship attribution) 기법을 한국어에 적용한 연구를 소개한다. 그 대상으로는 정형화된 장르인 신문 칼럼을, 구체적으로는 조선일보에 연재 중인 4인 칼럼니스트들의 각 40개 칼럼, 총 160개 칼럼 텍스트를 선정하였다. 이들에 대하여 어절, 음절, 형태소, 각 단위 2연쇄 등의 다양한 언어 단위들의 빈도 정보들을 이용한 저자 판별을 시도한 결과, 형태소 빈도를 기반으로 하여 최고 93%를 넘는 높은 예측 정확도를 얻을 수 있었다. 또한, 저자 개인 문체간의 거리도 빈도 정보로써 계량적 표상이 가능함을 보일 수 있었다. 이로써 빈도 분석과 같은 통계적, 계량적 방법을 통하여 한국어 텍스트에 대한 성공적인 저자 판별과 개인 문체의 정량화가 가능하다는 결론을 내릴 수 있다.
안드로이드 저자 식별 연구는 좁은 범위에서는 출처를 밝히기 위한 방법으로 해석할 수 있으나, 넓은 범위에서 본다면 알려진 저작물을 통해 유사한 저작물을 식별하는 통찰력을 얻기 위한 방법으로 해석할 수 있다. 안드로이드 저자 식별 연구에서 발견되는 문제점은 안드로이드 시스템 상 중요한 코드이지만 의미가 없는 코드들로 인하여 저자의 중요한 특징을 찾기 어렵다는 것이다. 이로 인해 합법적인 코드 또는 행동들이 악성코드로 잘못 정의되기도 한다. 이를 해결하기 위하여 서바이벌 네트워크 개념을 도입하여 여러 안드로이드 앱에서 발견되는 특징들을 제거하고 저자별로 정의되는 고유한 특징들을 생존시킴으로써 문제를 해결하고자 하였다. 제안하는 프레임워크와 선행된 연구를 비교하는 실험을 진행하였으며, 440개의 저자가 식별된 앱을 대상으로 실험한 결과에서 최대 92.10%의 분류 정확도를 도출하였고 선행된 연구와 최대 3.47%의 차이를 보였다. 이는 적은 양의 학습데이터를 이용하였으나 저자별 중복된 특징 없이 고유한 특징들을 이용하였기에 선행 연구와 차이가 나타났을 것으로 해석하였다. 또한 특징 정의 방법에 따른 선행 연구와의 비교 실험에서도 적은 수의 특징으로 동일한 정확도를 보일 수 있으며, 이는 서바이벌 네트워크 개념을 통한 지속적으로 중복된 의미 없는 특징을 관리할 수 있음을 알 수 있었다.
악성코드 기술 발전으로 변이, 난독화 등의 탐지 회피 방법이 고도화되고 있다. 이에 악성코드 탐지 기술에 있어 알려지지 않은 악성코드 탐지 기술이 중요하며, 배포된 악성코드를 통해 저자를 식별하여 알려지지 않은 악성코드를 탐지하는 악성코드 저자 식별 방법이 연구되고 있다. 본 논문에서는 바이너리 기반 저자 식별 방법에 대해 중요 정보인 컴파일러 정보를 추출하고자 하였으며, 연구 간에 특징 선택, 확률 및 비확률 모델, 최적화가 분류 효율성에 미치는 민감성(Sensitive)을 확인하고자 하였다. 실험에서 정보 이득을 통한 특징 선택 방법과 비확률 모델인 서포트 벡터 머신이 높은 효율성을 보였다. 최적화 연구 간에 제안하는 프레임워크를 통한 특징 선택 및 모델 최적화를 통해 높은 분류 정확도를 얻었으며, 최대 48%의 특징 감소 및 51배가량의 빠른 실행 속도라는 결과를 보였다. 본 연구를 통해 특징 선택 및 모델 최적화 방법이 분류 효율성에 미치는 민감성에 대해 확인할 수 있었다.
인터넷의 확산과 정보 교환, 배포와 수집 기술에 대한 의존도의 증대로 과거와는 비교할 수 없는 대용량의 데이터가 생성되었다. 대용량 데이터를 식별하고 가려내는 작업은 가까운 미래에 오늘날의 컴퓨터 과학의 상당 부분을 새롭게 정의할 것으로 예상된다. 여러 관련 분야에서 반복되는 중요한 과제는 재식별의 문제이다. 광범위한 정의에서, 재식별 문제는 과거에 인식된 객체를 다시 식별하는 문제이다. 예를 들면, 여러 장소에 설치된 감시 카메라에 포착된 어떤 사람을 추적하는 문제가 이에 해당한다. 본 논문에서는 서로 다른 분야에서 이 과제를 어떻게 정의하고, 이 과제를 어떻게 해결하는가에 대해 비교 분석한다. 비디오 감시에서 사람 재식별, 텍스트 샘플에서 저자 식별, 사진 선호도에 따른 사용자 식별 등이 이에 포함된다. 본 논문은 또한 학제간 해결 방안이 장점을 지니는 상황에 대한 비전을 제시한다.
최근 악성코드를 활용한 APT(Advanced Persistent Threat) 공격의 수가 점차 증가하면서 이를 예방하고 탐지하기 위한 연구가 활발히 진행되고 있다. 이러한 공격들은 공격이 발생하기 전에 탐지하고 차단하는 것도 중요하지만, 발생 공격 사례 또는 공격 유형에 대한 정확한 분석과 공격 분류를 통해 효과적인 대응을 하는 것 또한 중요하며, 이러한 대응은 해당 공격의 공격 그룹을 분석함으로써 정할 수 있다. 따라서 본 논문에서는 공격자 그룹의 특징을 파악하고 분석하기 위한 악성코드를 활용한 유전 알고리즘 기반 공격자 그룹 특징 추출 프레임워크를 제안한다. 해당 프레임워크에서는 수집된 악성코드를 디컴파일러와 디셈블러를 통해 관련 코드를 추출하고 코드 분석을 통해 저자와 관련된 정보들을 분석한다. 악성코드에는 해당 코드만이 가지고 있는 고유한 특징들이 존재하며, 이러한 특징들은 곧 해당 악성코드의 작성자 또는 공격자 그룹을 식별할 수 있는 특징이라고 할 수 있다. 따라서 우리는 저자 클러스터링 방법을 통해 바이너리 및 소스 코드에서 추출한 다양한 특징들 중에 특정 악성코드 작성자 그룹만이 가지고 있는 특징들을 선별하고, 정확한 클러스터링 수행을 위해 유전 알고리즘을 적용하여 주요 특징들을 유추한다. 또한 각 악성코드 저자 그룹들이 가지고 있는 특성들을 기반으로 각 그룹들만을 표현할 수 있는 특징들을 찾고 이를 통해 프로필을 작성하여 작성자 그룹이 정확하게 군집화되었는지 확인한다. 본 논문에서는 실험을 통해 유전 알고리즘을 활용하여 저자가 정확히 식별되는 지와 유전 알고리즘을 활용하여 주요 특징 식별이 가능한지를 확인 할 것이다. 실험 결과, 86%의 저자 분류 정확도를 보이는 것을 확인하였고 유전 알고리즘을 통해 추출된 정보들 중에 저자 분석에 사용될 특징들을 선별하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.