This paper presents an authorship attribution study in Korean conducted on a corpus of newspaper column texts. Based on the data set consisting of a total of 160 columns written by four columnists of Chosun Daily, the approach utilizes relative frequencies of various lexical units in Korean such as fully inflected words, morphemes, syllables and their bigrams in an attempt to establish authorship of a blind text selected from the set. Among these various lexical units, "the morpheme" is found to be most effective in predicting who among the four potential candidates authored a text, reporting accuracies of over 93%. The results indicate that quantitative and statistical techniques in authorship attribution and computational stylistics can be successfully applied to Korean texts.
Objectives : We would like to study what is the most appropriate "feature" to effectively perform authorship attribution of the text of Traditional East Asian Medicine Methods : The authorship attribution performance of the Support Vector Machine (SVM) was compared by cross validation, depending on whether the function words or content words, single word or collocations, and IDF weights were applied or not, using 'Variorum of the Nanjing' as an experimental Corpus. Results : When using the combination of 'function words/uni-bigram/TF', the performance was best with accuracy of 0.732, and the combination of 'content words/unigram/TFIDF' showed the lowest accuracy of 0.351. Conclusions : This shows the following facts from the authorship attribution of the text of East Asian traditional medicine. First, function words play an important role in comparison to content words. Second, collocations was relatively important in content words, but single words have more important meanings in function words. Third, unlike general text analysis, IDF weighting resulted in worse performance.
International Journal of Computer Science & Network Security
/
v.21
no.7
/
pp.317-323
/
2021
Social media is increasingly becoming a part of our daily life for communicating each other. There are various tools and applications for communication and therefore, identity theft is a common issue among users of such application. A new style of identity theft occurs when cybercriminals break into WhatsApp account, pretend as real friends and demand money or blackmail emotionally. In order to prevent from such issues, data mining can be used for text classification (TC) in analysis authorship attribution (AA) to recognize original sender of the message. Arabic is one of the most spoken languages around the world with different variants. In this research, we built a machine learning model for mining and analyzing the Arabic messages to identify the author of the messages in Saudi dialect. Many points would be addressed regarding authorship attribution mining and analysis: collect Arabic messages in the Saudi dialect, filtration of the messages' tokens. The classification would use a cross-validation technique and different machine-learning algorithms (Naïve Baye, Support Vector Machine). Results of average accuracy for Naïve Baye and Support Vector Machine have been presented and suggestions for future work have been presented.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.6
/
pp.1013-1021
/
2020
Malware Authorship Attribution is a research field for identifying malware by comparing the author characteristics of unknown malware with the characteristics of known malware authors. The authorship attribution method using binaries has the advantage that it is easy to collect and analyze targeted malicious codes, but the scope of using features is limited compared to the method using source code. This limitation has the disadvantage that accuracy decreases for a large number of authors. This study proposes a method of 'Defining semantic features from binaries' and 'Defining allowable ranges for redundant features using the concept of survival network' to complement the limitations in the identification of binary authors. The proposed method defines Opcode-based graph features from binary information, and defines the allowable range for selecting unique features for each author using the concept of a survival network. Through this, it was possible to define the feature definition and feature selection method for each author as a single technology, and through the experiment, it was confirmed that it was possible to derive the same level of accuracy as the source code-based analysis with an improvement of 5.0% accuracy compared to the previous study.
According to rapid development of technology, web text is growing explosively and attracting many fields as substitution for survey. The user of Facebook is reaching up to 113 million people per month, Twitter is used in various institution or company as a behavioral analysis tool. However, many research has focused on meaning of the text itself. And there is a lack of study for text's creation subject. Therefore, this research consists of sex/age text classification with by using 20,187 Facebook users' posts that reveal the sex and age of the writer. This research utilized Convolution Neural Networks, a type of deep learning algorithms which came into the spotlight as a recent image classifier in web text analyzing. The following result assured with 92% of accuracy for possibility as a text classifier. Also, this research was minimizing the Korean morpheme analysis and it was conducted using a Korean web text to Authorship Attribution. Based on these feature, this study can develop users' multiple capacity such as web text management information resource for worker, non-grammatical analyzing system for researchers. Thus, this study proposes a new method for web text analysis.
Annual Conference on Human and Language Technology
/
2008.10a
/
pp.29-34
/
2008
본고에서는 빈도 정보를 이용한 저자 판별 (authorship attribution) 기법을 한국어에 적용한 연구를 소개한다. 그 대상으로는 정형화된 장르인 신문 칼럼을, 구체적으로는 조선일보에 연재 중인 4인 칼럼니스트들의 각 40개 칼럼, 총 160개 칼럼 텍스트를 선정하였다. 이들에 대하여 어절, 음절, 형태소, 각 단위 2연쇄 등의 다양한 언어 단위들의 빈도 정보들을 이용한 저자 판별을 시도한 결과, 형태소 빈도를 기반으로 하여 최고 93%를 넘는 높은 예측 정확도를 얻을 수 있었다. 또한, 저자 개인 문체간의 거리도 빈도 정보로써 계량적 표상이 가능함을 보일 수 있었다. 이로써 빈도 분석과 같은 통계적, 계량적 방법을 통하여 한국어 텍스트에 대한 성공적인 저자 판별과 개인 문체의 정량화가 가능하다는 결론을 내릴 수 있다.
The Android author identification study can be interpreted as a method for revealing the source in a narrow range, but if viewed in a wide range, it can be interpreted as a study to gain insight to identify similar works through known works. The problem found in the Android author identification study is that it is an important code on the Android system, but it is difficult to find the important feature of the author due to the meaningless codes. Due to this, legitimate codes or behaviors were also incorrectly defined as malicious codes. To solve this, we introduced the concept of survival network to solve the problem by removing the features found in various Android apps and surviving unique features defined by authors. We conducted an experiment comparing the proposed framework with a previous study. From the results of experiments on 440 authors' identified apps, we obtained a classification accuracy of up to 92.10%, and showed a difference of up to 3.47% from the previous study. It used a small amount of learning data, but because it used unique features without duplicate features for each author, it was considered that there was a difference from previous studies. In addition, even in comparative experiments with previous studies according to the feature definition method, the same accuracy can be shown with a small number of features, and this can be seen that continuously overlapping meaningless features can be managed through the concept of a survival network.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.4
/
pp.537-544
/
2020
Advances in detection techniques, such as mutation and obfuscation, are being advanced with the development of malware technology. In the malware detection technology, unknown malware detection technology is important, and a method for Malware Authorship Attribution that detects an unknown malicious code by identifying the author through distributed malware is being studied. In this paper, we try to extract the compiler information affecting the binary-based author identification method and to investigate the sensitivity of feature selection, probability and non-probability models, and optimization to classification efficiency between studies. In the experiment, the feature selection method through information gain and the support vector machine, which is a non-probability model, showed high efficiency. Among the optimization studies, high classification accuracy was obtained through feature selection and model optimization through the proposed framework, and resulted in 48% feature reduction and 53 faster execution speed. Through this study, we can confirm the sensitivity of feature selection, model, and optimization methods to classification efficiency.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.12
no.6
/
pp.135-139
/
2012
The wide diffusion of internet and the overall increased reliance on technology for information communication, dissemination and gathering have created an unparalleled mass of data. Sifting through this data is defining and will define in the foreseeable future a big part of contemporary computer science. Within this data, a growing proportion is given by personal information, which represents a unique opportunity to study human activities extensively and live. One important recurring challenge in many disciplines is the problem of people re-identification. In its broadest definition, re-identification is the problem of newly recognizing previously identified people, such as following an unknown person while he walks through many different surveillance cameras in different locations. Our goals is to review how several diverse disciplines define and meet this challenge, from person re-identification in video-surveillance to authorship attribution in text samples to distinguishing users based on their preferences of pictures. We further envision a situation where multidisciplinary solutions might be beneficial.
Recently, the number of APT(Advanced Persistent Threats) attack using malware has been increasing, and research is underway to prevent and detect them. While it is important to detect and block attacks before they occur, it is also important to make an effective response through an accurate analysis for attack case and attack type, these respond which can be determined by analyzing the attack group of such attacks. Therefore, this paper propose a framework based on genetic algorithm for analyzing malware and understanding attacker group's features. The framework uses decompiler and disassembler to extract related code in collected malware, and analyzes information related to author through code analysis. Malware has unique characteristics that only it has, which can be said to be features that can identify the author or attacker groups of that malware. So, we select specific features only having attack group among the various features extracted from binary and source code through the authorship clustering method, and apply genetic algorithm to accurate clustering to infer specific features. Also, we find features which based on characteristics each group of malware authors has that can express each group, and create profiles to verify that the group of authors is correctly clustered. In this paper, we do experiment about author classification using genetic algorithm and finding specific features to express author characteristic. In experiment result, we identified an author classification accuracy of 86% and selected features to be used for authorship analysis among the information extracted through genetic algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.