• Title/Summary/Keyword: austenitic steel

Search Result 468, Processing Time 0.021 seconds

Simulation-based Multi-stage Tool Design for an Electronic part with Ferritic Stainless Steel Sheet (400계 스테인리스 판재의 가전 부품 적용을 위한 전산해석 기반 다단 금형설계)

  • Park, K.D.;Jang, J.H.;Kim, S.H.;Kim, K.P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.174-177
    • /
    • 2008
  • This paper replaces an conventional 300-austenitic stainless steel sheet to a 400-ferritic stainless steel for the cost reduction of a pulsator cover of a washing machine. However, ferritic stainless steel has poor formability in comparison with austenitic one. The low formability of ferritic steel results in problems during stamping such as fracture, wrinkling, shape inaccuracy and so on. Design modification of the stamping tool is carried out with the aid of the finite element analysis for multi-stage stamping process. The simulation results show that fracture occurs on top of the product while wrinkles are generated by the excess metal near the wing part. Modification of the initial stamping die is performed to improve metal flow and to eliminate problems during the stamping process. Simulation with the modified design fully demonstrates that safe forming is possible without inferiorities.

  • PDF

Mechanical behavior of 316L austenitic stainless steel bolts after fire

  • Zhengyi Kong;Bo Yang;Cuiqiang Shi;Xinjie Huang;George Vasdravellis;Quang-Viet Vu;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.281-298
    • /
    • 2024
  • Stainless steel bolts (SSB) are increasingly utilized in bolted steel connections due to their good mechanical performance and excellent corrosion resistance. Fire accidents, which commonly occur in engineering scenarios, pose a significant threat to the safety of steel frames. The post-fire behavior of SSB has a significant influence on the structural integrity of steel frames, and neglecting the effect of temperature can lead to serious accidents in engineering. Therefore, it is important to evaluate the performance of SSB at elevated temperatures and their residual strength after a fire incident. To investigate the mechanical behavior of SSB after fire, 114 bolts with grades A4-70 and A4-80, manufactured from 316L austenitic stainless steel, were subjected to elevated temperatures ranging from 20℃ to 1200℃. Two different cooling methods commonly employed in engineering, namely cooling at ambient temperatures (air cooling) and cooling in water (water cooling), were used to cool the bolts. Tensile tests were performed to examine the influence of elevated temperatures and cooling methods on the mechanical behavior of SSB. The results indicate that the temperature does not significantly affect the Young's modulus and the ultimate strength of SSB. Up to 500℃, the yield strength increases with temperature, but this trend reverses when the temperature exceeds 500℃. In contrast, the ultimate strain shows the opposite trend. The strain hardening exponent is not significantly influenced by the temperature until it reaches 500℃. The cooling methods employed have an insignificant impact on the performance of SSB. When compared to high-strength bolts, 316L austenitic SSB demonstrate superior fire resistance. Design models for the post-fire mechanical behavior of 316L austenitic SSB, encompassing parameters such as the elasticity modulus, yield strength, ultimate strength, ultimate strain, and strain hardening exponent, are proposed, and a more precise stress-strain model is recommended to predict the mechanical behavior of 316L austenitic SSB after a fire incident.

Effect of Grain Size on the Tensile Properties of an Austenitic High-Manganese Steel (오스테나이트계 고망간강의 인장 특성에 미치는 결정립 크기의 영향)

  • Lee, Sang-In;Cho, Yun;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.325-331
    • /
    • 2016
  • This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of $23.4mJ/m^2$ to $27.1mJ/m^2$. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformation-induced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.

The Influence of Treatment Condition During Low Temperature Plasma Carburizing of AISI304L Stainless Steel (AISI304L 강에 저온 플라즈마침탄 처리 시 처리조건에 따른 표면특성평가)

  • Lee, In-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.56-60
    • /
    • 2011
  • A low temperature plasma carburizing process was performed to AISI 304L austenitic stainless steel to achieve the enhancement of surface hardness without a compromise in their corrosion resistance. Attempts were made to investigate the influence of the processing temperatures on the surface-hardened layer during low temperature plasma carburizng in order to obtain the optimum processing conditions. The expanded austenite (${\gamma}C$) was formed on all the treated surfaces. Precipitates of chromium carbides were detected in the hardened layer (C-enriched layer) only for the specimen treated at $500^{\circ}C$. The hardened layer thickness of ${\gamma}C$ increased up to about $35\;{\mu}m$, with increasing treatment temperature. The surface hardness reached about 1000 $HK_{0.05}$, which is about 4 times higher than that of the untreated sample (250 $HK_{0.05}$). Minor loss in corrosion resistance was observed for the specimens treated at temperatures of $310^{\circ}C-450^{\circ}C$ compared with untreated austenitic stainless steel. Particularly, the precipitation of chromium carbides at $500^{\circ}C$ led to a significant decrease in the corrosion resistance.

Constitutive model for ratcheting behavior of Z2CND18.12N austenitic stainless steel under non-symmetric cyclic stress based on BP neural network

  • Wang, Xingang;Chen, Xiaohui;Yan, Mingming;Chang, Miaoxin
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.517-525
    • /
    • 2018
  • The specimens made by Z2CND18.12N austenitic stainless steel were conducted on a 100 kN closed loop servo hydraulic tension-compression testing machine with a digital controller. Uniaxial tension and uniaxial ratcheting effect tests were carried out at $25^{\circ}C$. Moreover, Uniaxial tension tests were conducted at $150^{\circ}C$, $250^{\circ}C$ and $350^{\circ}C$. Based on these experimental data, the prediction models of stress-strain curve and the relationship of ratcheting strain and number of cycles were established by the algorithm principle of BP neural network. The results indicated that the predicted results of neural network model were in well agreement with experimental data. It was found that the BP neural network model had high validity and accuracy.

Fabrication and Characterization of ODS 316L Stainless Steels (산화물 분산강화형 316L 스테인리스강의 제조와 특성 연구)

  • Kim, Min-Ho;Ryu, Ho-Jin;Kim, Sung-Soo;Han, Chang-Hee;Jang, Jin-Sung;Kwon, Oh-Jong
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.122-130
    • /
    • 2009
  • Austenitic oxide-dispersion-strengthened (ODS) stainless steel was fabricated using a wet mixing process without a mechanical milling in order to reduce contaminations of impurities during their fabrication process. Solution of yttrium nitrate was dried after a wet mixing with 316L stainless steel powder. Carbon and oxygen contents were effectively reduced by this wet processing. Microstructural analysis showed that coarse yttrium silicates of about 150 nm were formed in austenitic ODS steels with a silicon content of about 0.8 wt%. Wet-processed austenitic ODS steel without silicon showed higher yield strength by the presence of finer oxide of about 20 nm.

HAZ TOUGHNESS AND MICROSTRUCTURE IN HIGH NITROGEN AUSTENITIC STAINLESS STEEL

  • Sato, Yoshihiro;Shiotsu, Tomoya;Nakagawa, Takafumi;Kikuchi, Yasushi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.38-42
    • /
    • 2002
  • HAZ(Heat Affected Zone of weldm ents) properties were investigated for a high nitrogen austenitic stainless steel with a chemical composition of Fe-0.02C-0.15Si-6.00Mn-10.0Ni-23.0Cr-2.00Mo-0.48N-0.14V. Thermal cycle of HAZ was simulated by the thermal cycle simulator (Gleeble 1500). The heat treatment was applied to the Charpy test size sample without notch under various peak temperatures and/or the holding times condition. V-notch Charpy test was performed at the temperature range of 273~77 K. Metallographic examination also was carried out by using optical microscopy, scanning electron microscopy and transmission electron microscopy. The simulated specimens revealed a slight embrittlement compared with the base materials. The impact toughness of the specimens deteriorated with the decreasing test temperature. The results from Charpy V-notch test, however, showed that significant degradation of absorbed energy caused by brittle fracture was not observed for the specimen tested in the test temperature range.

  • PDF

Tensile Properties of High Mn Austenitic Stainless Steel with Two Phases of Martensite and Austenite (마르텐사이트와 오스테나이트의 2상 조직을 갖는 고 Mn 오스테나이트계 스테인리스강의 인장성질)

  • Kim, Young-Hwa;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.9-13
    • /
    • 2013
  • The tensile properties of high manganese austenitic stainless steel with the two phase structures of deformation-induced martensite and reversed austenite were studied. Reversed austenite with an ultra-fine grain size of less than $0.3{\mu}m$ was obtained by reversion treatment. The two phases structures of deformation-induced martensite and reversed austenite were obtained by an annealing treatment in the range of $500^{\circ}C-700^{\circ}C$ for various times in 70% cold- rolled high-manganese austenitic stainless steel. The volume fraction of the reversed austenite increased rapidly with increases in the annealing temperature and time. In the stainless steel with the two phases of austenite and martensite, the strength decreased rapidly, while the elongation increased slowly and then rapidly increased with an increase in the volume fraction of the reversed austenite. Therefore, the strength and elongation were strongly controlled by the volume fraction of reversed austenite. A good combination of high strength and elongation could be obtained by the mixed structure of reversed austenite and deformation-induced martensite.

Effect of Stainless Steel Properties on Performance of Multi-layer Bellows (다층형 벨로우즈의 성능에 미치는 스테인리스강 물성의 영향)

  • Suh, C.H.;Oh, S.K.;Jung, Y.C.;Lee, R.G.;Park, M.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • Generally ferritic stainless steels are used for parts of exhaust system in commercial vehicle, because they have many advantages as low price and high corrosion resistant compared with austenitic stainless steels. Even though ferritic stainless steels have such various merits, austenitic stainless steels have been used to manufacture multi-layer bellows with complex geometry because of their high ductility. Recently, the mechanical properties of the ferritic stainless steels are getting improved and alternating austenitic stainless steel. In this paper, the possibility of mass production of multi-layer bellows made of ferritic stainless steel like MH1 and 443CT was studied. Tensile test, ridging test and corrosion test were carried out to observe material properties of STS304, MH1 and 443CT. Three types of prototype bellows were made using STS304, MH1 and 443CT stainless steels, and stiffness and fatigue tests were carried out to evaluate performance of the prototype bellows.