• Title/Summary/Keyword: austenitic alloy

Search Result 98, Processing Time 0.057 seconds

OPTIMIZATION OF VARIABLES AFFECTING CORROSION RESISTANCE OF VACUUM SINTERED STAINLESS STEELS

  • Klar, Erhard;Samal, Prasan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1995.11a
    • /
    • pp.9-9
    • /
    • 1995
  • MATERIAL AND PROCESS VARIABLES THAT STRONGLY AFFECT THE CORROSION RESISTANCE OF PA4 STAINLESS STEELS, INCLUDE : ALLOY COMPOSITION, POWDER CLEANLINESS, NITROGEN, OXYGEN AND GARBON CONTENTS, CHROMIUM DEPLETION DUE TO SURFACE EVAPORATION AND SINTERED DENSITY. THE OPTIMUM PROCESS PARAMETERS FOR DELUBRICATION AND SINTERING THAT RESULT IN LOWEST LEVELS OF NITROGEN, OXYGEN AND CARBON AND MINIMUM LEVELS OF CHROMIUM DEPLETION WILL BE PRESENTED, FOR A NUMBER OF AUSTENTIC AND FERRITIC STAINLESS STEELS. THE EFFECT OF SINTERED DENSITY ON THE CORROSION RESISTANCE OF BOTH AUSTENITIC AND FERRITIC GRADES OF STAINLESS STEEL WILL ALSO BE COVERED.

  • PDF

Application of Fe-Mn High Damping Alloys for Reduction of Noise and Vibration in Power Plants (Fe-Mn 방진합금을 적용한 발전소 격납용기 살수펌프의 소음$\cdot$진동 저감효과에 관한 연구)

  • 백승한
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.720-729
    • /
    • 1999
  • Coventional methods for reducing vibration in engineering designs (i.e. by stifferning or detuning) may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Some alloys with a combination of high damping capacity and good mechanical properties can provide attractive techanical and economical solutions to problems involving seismic, shock and vibration isolation. Although several non ferrous damping alloys have been developed, none of those materials are applied in any industrial factor due largely to high production cost. To meet these requirement, we have developed a new Fe-Mn high damping alloy. In previous studies, we have reported that an Fe-17%Mn alloy exhibits the highest damping capacity(Specific Damping Capacity:SDC, 30%) among Fe-Mn binary system, and proposed that the boundaries of various types such as $\varepsilon$-martensite variant boundaries, stacking faults in $\varepsilon$-martensite, stacking faults in austenitic and ${\gamma}$$\gamma /\varepsilon$ interfaces give rise to a high damping capacity. The Fe-17%Mn alloy also has advantages of good mechanical properties(T.S. 70 kg/nm$^2$ and low cost over other damping alloys(1/4 times the cost of non-ferrous damping alloy). Thus, the Fe-17%Mn high damping alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components. In this paper, the overall properties of the Fe-17%Mn high damping alloy is introduced, and its applicability to containment spray pump in the power plant is discussed.

  • PDF

Effect of Prior Deformation on the Martensitic Transformation Temperature(Ms) and Reversed Martensitic Transformation Temperature(As) in Fe-Ni Alloy (Fe-Ni합금(合金)의 마르텐사이트변태온도(變態溫度)(Ms)와 역변태온도(逆變態溫度)(As)에 미치는 소성가공(塑性加工)의 영향(影響))

  • Shon, In-Jin;Nam, Kee-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.4
    • /
    • pp.41-52
    • /
    • 1990
  • This research has been performed in order to investigate the effect of prior deformation on the Ms temperature and reversed As of Fe-Ni alloy. The Ms temperature rose with increment of strain to 30% but lowered over 50%. It can be analysed that martensitic transformation was promoted by partial dislocation in low strain, but suppressed by dislocation cell structures in high strain. The As temperature was substantially increased with higher deformation to 20% but slowly above 50%. It may be caused that as the transition bands formed by deformation constrained shear strain, therefore austenitic transformation was hindered.

  • PDF

An Investigation on the Microstructure Evolution and Tensile Property in the Weld Heat-Affected Zone of Austenitic FeMnAlC Lightweight Steels (오스테나이트계 FeMnAlC 경량철강의 용접열영향부 미세조직 변화 및 인장특성에 관한 연구)

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • IMicrostructure evolution and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-30Mn-9Al-0.9C lightweight steels were investigated. Five alloys with different V and Nb content were prepared by vacuum induction melting and hot rolling process. The HAZ samples were simulated by a Gleeble simulator with welding condition of 300kJ/cm heat input and HAZ peak temperatures of $1150^{\circ}C$ and $1250^{\circ}C$. Microstructures of base steels and HAZ samples were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their mechanical properties were evaluated by tensile tests. The addition of V and Nb formed fine V and/or Nb-rich carbides, and these carbides increased tensile and yield strength of base steels by grain refinement and precipitation hardening. During thermal cycle for HAZ simulation, the grain growth occurred and the ordered carbide (${\kappa}-carbide$) formed in the HAZs. The yield strength of HAZ samples (HAZ 1) simulated in $1150^{\circ}C$ peak temperature was higher as compared to the base steel due to the formation of ${\kappa}-carbide$, while the yield strength of the HAZ samples (HAZ 2) simulated in $1250^{\circ}C$ decreased as compared to HAZ 1 due to the excessive grain growth.

A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys Part I : Solidification Cracking in the Fusion Zone (Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part I : 용착금속의 응고균열)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.78-89
    • /
    • 1997
  • This study has evaluated the weld metal solidification cracking behavior of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). Austenitic stainless steels(304, 310S) were also included for comparison. In addition, a possible mechanism of solidification cracking in the fusion zone was suggested based on the extensive microstructural examinations with SEM, EDAX, TEM, SADP and AEM. The solidification cracking resistance of Ni base superalloys was found to be far inferior to that of austenitic stainless steels. The solidification cracking of Incoloy 825 and Inconel 718 was believel to be closely related with the Laves-austenite (Ti rich in 825 and Nb rich in 718) and MC-austenite eutectic phases formed along the grain boundaries during solidification. Cracking in Inconel 600 was always found along the grain boundaries which were enriched with Ti and P. Further, solidifidcation cracking resistance was dependent not only upon the type of love melting phases but also on the amount of the phases along the solidification grain boundaries.

  • PDF

Effects of Alloying Elements on the Characteristics of Microstructure and High Temperature Oxidation of Cast Austenitic Stainless Steel (오스테나이트 스테인리스 주강의 미세 조직 및 고온 산화 특성에 미치는 합금원소의 영향)

  • Lee, In-Sung;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, Jung-Suk;Ko, Young-Sang;Kim, Jong-Myoung
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.179-186
    • /
    • 2010
  • To elucidate the effects of alloying elements on the characteristics of microstructure and high temperature oxidation of cast austenitic stainless steel, a thermodynamic calculation, a cyclic oxidation test, a X-ray diffraction, a scanning electron microscopy-back scattered electron, a electron probe microanalysis were conducted. The thermodynamic calculation for the effect of vanadium (V) addition on the formation of various precipitates leads to a decrease of chromium (Cr)-rich $M_{23}C_6$ carbides due to the formation of M (C, N) carbo-nitrides containing V and / or niobium (Nb). The V added alloy increased the resistance to high temperature oxidation due to a decrease of Cr-depleted zone deteriorating the oxidation resistance and due to the V-enriched oxide layer formed in inner oxide layer blocking the outward transport of cations.

Martensitic Stainless Steel Nitrided in a Low-Pressure rf Plasma (RF플라즈마에 의한 마르텐사이트 스테인레스강의 질화에 관한 연구)

  • J.S. Yoo;S.K. Kim
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.69-69
    • /
    • 2001
  • We report a study of the nitriding of the martensitic grade of stainless steel AKSK 420 in a low-pressure rl discharge using pure nitrogen. Much studied samples of the austenitic grade AISI 304 were treated at the same time to provide a comparison. With a treatment time of 4.0 h at $400^{\circ}C$, the nitrogen-rich layer on MSK 420 is 20pm thick and has a hardness about 4.3 times higher than that of the untreated material. The layer thickness is much greater than that obtained on AISI 304 under identical treatment conditions, reflecting the different Cr content of the two alloys. The alloy AlISI 420 is more susceptible than AISI 304 to the formation of CrN and ferrite, and this has a deleterious effect on the hardnes, gain. Below the temperature at which CrN forms, the treated layer retains its martensitic structure, but with a larger lattice parameter than the bulk, a phase that we term expanded martensite, by analogy with the situation with austenitic stainless steel. The fact that the treated layer retains a martensitic structure is interesting in view of previous evidence that nitrogen is an austenite stabilizer.

  • PDF

Intergranular Corrosion Behavior of Medium and Low Carbon Austenitic Stainless Steel (오스테나이트계 중탄소 및 저탄소 스테인리스강의 입계부식 거동 분석)

  • Won, S.Y.;Kim, G.B.;Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.230-241
    • /
    • 2022
  • Austenitic stainless steel has been widely used because of its good corrosion resistance and mechanical properties. However, intergranular corrosion can occur if the alloy is welded or aged. The objective of this study was to determine intergranular corrosion behaviors of austenitic medium carbon (0.05 wt%) and low carbon (0.02 wt%) stainless steel aged at several conditions. Alloys were evaluated according to ASTM A262 Practice A, ISO 12732 DL-EPR (double loop-electrochemical potentiokinetic reactivation) test, and ASTM A262 Practice C. The degree of sensitization and intergranular corrosion rate were obtained. The relationship between the degree of sensitization and the intergranular corrosion rate showed a very large fluctuation. Such behavior might be related to whether two-dimension tests or three-dimension tests were performed. On the other hand, regardless of carbon content of alloys, when the intergranular corrosion rate increased, the degree of sensitization also increased. However, the DL-EPR test showed a higher sensitivity than the Huey test for differentiating the intergranular corrosion property at a low intergranular corrosion rate, while the Huey test had a higher sensitivity than the DL-EPR test for distinguishing the intergranular corrosion property at a high intergranular corrosion rate.

Corrosion behavior and mechanism of CLAM and 316L steels in flowing Pb-17Li alloy under magnetic field

  • Xiao, Zunqi;Liu, Jing;Jiang, Zhizhong;Luo, Lin;Huang, Qunying
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1962-1971
    • /
    • 2022
  • The liquid lead-lithium (Pb-17Li) blanket has many applications in fusion reactors due to its good tritium breeding performance, high heat transfer efficiency and safety. The compatibility of liquid Pb-17Li alloy with the structural material of blanket under magnetic field is one of the concerns. In this study, corrosion experiments China low activation martensitic (CLAM) steel and 316L steel were carried out in a forced convection Pb-17Li loop under 1.0 T magnetic field at 480 ℃ for 1000 h. The corrosion results on 316L steel showed the characteristic with a superficial porous layer resulted from selective leaching of high-soluble alloy elements and subsequent phase transformation from austenitic matrix to ferritic phase. Then the porous layers were eroded by high-velocity jet fluid. The main corrosion mechanism of CLAM steel was selective dissolution-base corrosion attack on the microstructure boundary regions and exclusively on high residual stress areas. CLAM steel performed a better corrosion resistance than that of 316L steel. The high Ni dissolution rate and the erosion of corroded layers are the main causes for the severe corrosion of 316L steel.

Evaluation of Microstructures and Mechanical Properties in Functionally Graded Materials (STS 316L and Low Alloy Steel) Produced by DED Processes (DED 공정으로 제조된 경사조성재료 (STS 316L과 저합금강)의 미세조직 및 기계적특성 평가)

  • Shin, G.;Choo, W.;Yoon, J.H.;Yang, S.Y.;Kim, J.H.
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.309-313
    • /
    • 2022
  • In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.