• Title/Summary/Keyword: attitude stabilization

Search Result 71, Processing Time 0.053 seconds

A Triple Nested PID Controller based on Sensor Fusion for Quadrotor Attitude Stabilization (쿼드로터 자세 안정화를 위한 센서융합 기반 3중 중첩 PID 제어기)

  • Cho, Youngwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.871-877
    • /
    • 2018
  • In this paper, we propose a triple nested PID control scheme for stable hovering of a quadrotor and propose a complementary filter based sensor fusion technique to improve the performance of attitude, altitude and velocity measurement. The triple nested controller has a structure in which a double nested attitude controller that has the angular velocity PD controller in inner loop and the angular PI controller in outer loop, is nested in a velocity control loop to enable stable hovering even in the case of disturbance. We also propose a sensor fusion technique by applying a complementary filter in order to reduce the noise and drift error included in the acceleration and gyro sensor and to measure the velocity by fusing image, gyro, and acceleration sensor. In order to verity the performance, we applied the proposed control and measurement scheme to hovering control of quadrotor.

Numerical analysis of the attitude stability of a charged spacecraft in the Pitch-Roll-Yaw directions

  • Abdel-Aziz, Yehia A.;Shoaib, Muhammad
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, the effect of Lorentz force on the stability of attitude orientation of a charged spacecraft moving in an elliptic orbit in the geomagnetic field is considered. Euler equations are used to derive the equations of attitude motion of a charged spacecraft. The equilibrium positions and its stability are investigated separately in the pitch, roll and yaw directions. In each direction, we use the Lorentz force to identify an attitude stabilization parameter. The analytical methods confirm that we can use the Lorentz force as a stabilization method. The charge-to-mass ratio is the main key of control, in addition to the components of the radius vector of the charged center of the spacecraft, relative to the center of mass of the spacecraft. The numerical results determine stable and unstable equilibrium positions. Therefore, in order to generate optimum charge, which may stabilize the attitude motion of a spacecraft, the amount of charge on the surface of spacecraft will need to be monitored for passive control.

Stabilizing Control Law of Underactuateted Spacecraft (작동기 수가 부족한 위성체의 자세안정화기법)

  • 김성필;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.102-102
    • /
    • 2000
  • In this paper, attitude control laws are proposed for an underactuated spacecraft. The stabilization problem of the complete system including the kinematics as well as the dynamics of the spacecraft is addressed. The quaternion parameterization is used. The key idea is that the angular velocity of a uncontrolled axis is first regulated and then, the other states are regulated. Based on numerical simulations, it is conjectured that the closed-loop nonlinear system of a spacecraft with the proposed control laws is globally asymptotically stable. The control law for the stabilization problem around the origin as well as the command following problem are proposed. The numerical examples indicate that the stabilization of an underactuated asymmetric spacecraft can be achieved successfully.

  • PDF

Quadrotor Attitude Stabilization by Using PID Controller (PID 제어기를 이용한 쿼드로터 자세 안정화)

  • Kim, Yongyoung;Shin, Junhee;Lee, Sunik;Lee, Hyounggon;Lim, Hyunmin;Kim, Kwangjin;Lee, Sangchul
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.4
    • /
    • pp.18-27
    • /
    • 2010
  • Quadrotor is an aircraft which is possible in Vertical Take-off and Landing(VTOL). This aircraft can not only be created as an Unmanned Aerial Vehicle(UAV), but also can be easily used in various fields because of its simplicity of construction. This study is mainly conducted with two main purposes. The first goal is designing the quadrotor focusing on the lightweight and protecting the airframe. The second purpose is stabilizing the quadrotor's attitude by using the PID controller. MATLAB simulation is performed for obtaining PID gain based on equations of motion. We used the compensation filter technique for the calibration of sensor data. PID gain has been drawn out based on the MATLAB simulation. The efficiency of the attitude control is improved by calibration of sensor data.

  • PDF

A method for image processing by use of inertial data of camera

  • Kaba, K.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.221-225
    • /
    • 1998
  • This paper is to present a method for recognizing an image of a tracking object by processing the image from a camera, whose attitude is controlled in inertial space with inertial co-ordinate system. In order to recognize an object, a pseudo-random M-array is attached on the object and it is observed by the camera which is controlled on inertial coordinate basis by inertial stabilization unit. When the attitude of the camera is changed, the observed image of M-array is transformed by use of affine transformation to the image in inertial coordinate system. Taking the cross-correlation function between the affine-transformed image and the original image, we can recognize the object. As parameters of the attitude of the camera, we used the azimuth angle of camera, which is de-fected by gyroscope of an inertial sensor, and elevation an91e of camera which is calculated from the gravitational acceleration detected by servo accelerometer.

  • PDF

Kinematic and Image Stabilization of a Two-axis Surveillance System on Ship (선상 2축 감시장비의 기구 및 영상 안정화)

  • Lee, Kyung-Min;Cho, Jae-Hyun;Kim, Ho-Bum;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.55-60
    • /
    • 2012
  • When operating a surveillance system in the maritime environment, its stabilization performance is degraded due to undesirable disturbance motions. For accurate target pointing of a 2-axes surveillance system on shipboard, the kinematic stabilization is first applied, which compensates a deviated motion via coordinate transformations of attitude information. Resultantly, the stabilization error is no longer reduced due to less accuracy of a MEMS sensor and kinematic constraint, leading to introduction of the image stabilization as a complementary function. And for real-time execution of the present dual stabilization scheme, a HILS (Hardware In the Loop Simulation) test bed including 6-dof motion simulator has been constructed, and through the obtained HILS data, it has been confirmed that the stabilization is successfully.

Study on The Attitude Stabilization Techniques of Leo Satellites

  • Hwan, Lho-Young;Yong, Jung-Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.56.5-56
    • /
    • 2001
  • In the three axis control of satellite by using reaction wheel and gyro, a reaction wheel produces the control torque by the wheel speed or momentum, and a gyro carries out measuring of the attitude angle and the attitude angular velocity In this study, dynamic modelling of the Low Earth Orbit (LEO) is consisted of the one from the rotational motion of the satellite with the basic rigid body and a flexible body model, and the gyro in addition to the reaction wheel model. The results obtained by the robust controller are compared with those of the PI (Proportional and Integration) controller which is commonly used for the stabilizing satellite.

  • PDF

Stabilization of Attitude for Autonomous Bicycle System Using Sliding Mode Control

  • Park, In-Gyu;Ham, Woon-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.173.3-173
    • /
    • 2001
  • In this paper, attitude control of autonomous system using bike based on variable structure control is discussed. Variable structure control is more than a promising technique in the field of nonlinear control. It permits the realization of very robust and simple regulators, with appealing sliding mode characteristics especially if the considered dynamics requires a very short sampling time. We derive dynamic equation of it and demonstrate that the designed controller stabilizes attitude simultaneously regardless of wheel position by computer simulation.

  • PDF

Stabilization Technique for a Dual-axis Rotational Inertial Navigation System considering Waves (파도를 고려한 2축 회전형 관성항법시스템의 안정화 기법)

  • Myeong-Seok Chae;Seong-Yun Cho;Chan-Gook Park;Min-Su Jo;Chan-Joo Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.437-444
    • /
    • 2024
  • The rotational inertial navigation system can provide more accurate navigation information by mounting an IMU (Inertial Measurement Unit) on the gimbal and rotating the gimbal regularly to cancel out the errors of the IMU. However, when an attitude change occurs due to waves, the attitude error is not removed to 0 at the end of one cycle of the rotation procedure and causes a large position error. In this paper, considering this problem, we propose a method of stabilizing the external gimbal by rotating it based on the roll information of the vehicle. Based on simulation, the impact of waves is analyzed and the performance of external gimbal stabilization is verified.