• 제목/요약/키워드: attenuation curves

검색결과 57건 처리시간 0.031초

스테인리스 304L강의 수소장입시간에 대한 비파괴기법 적용 (Application of Nondestructive Technique on Hydrogen Charging Times of Stainless Steel 304L)

  • 이진경;황승국;이상필;배동수;손영석
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.60-66
    • /
    • 2015
  • Embrittlement of material by hydrogen charging should be cleared for safety of storage vessel of hydrogen and components deal with hydrogen. A stainless steel is generally used as materials for hydrogen transportation and storage, and it has a big advantage of corrosion resistance due to nickel component in material. In this study, microscopic damage behavior of stainless steel according to the hydrogen charging time using nondestructive evaluation was studied. The surface of stainless steel became more brittle as the hydrogen charging time increased. The parameters of nondestructive evaluation were also changed with the embrittlement of stainless steel surface by hydrogen charging. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties of stainless steel by hydrogen charging. The attenuation coefficient of ultrasonic wave was increased with hydrogen charging time because of surface embrittlement of stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced hydrogen charging. AE event at the hydrogen charged specimen was obviously decreased at the plastic zone of stress-strain curves, while the number of event for the specimen of hydrogen free was dramatically generated when compared with the specimens underwent hydrogen charging.

A Method for Simultaneous Measurement of Air Kerma, Half Value Layer and Tube Potential in Quality Control Procedure of Diagnostic x ray units

  • Katoh, Tsuguhisa;Saitoh, Hidetoshi;Ohtani, Hiroki;Negishi, Tooru;Myojoyama, Atsushi;Ohno, Yuusuke;Sasaki, Takehito
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.294-297
    • /
    • 2002
  • For the quality control procedure of diagnostic x ray units, a method for simultaneous measurement of air kerma, half value layer and tube potential was developed utilizing a computed radiography system for intraoral radiography and film badge case. The response of average pixel values under the windows were calibrated by x rays generated at tube potentials from 40 to 140 kV with filtration from 1.5 to 3.7 mmAl. The calibration curves for half value layer and tube potential were derived as functions of attenuation factors by the 1.4 mmAl filter and the 0.2 mmCu filter. The energy dependency of the open window response was corrected by the calibration factor as a function of the attenuation factor by the 1.4 mmAl filter. The uncertainty of the estimated half value layer, tube potential and air kerma were 0.2 mmAl, 3.6 % and 5 %, respectively. It was thus suggested that this system could be applied to quality control program to detect the variation of working condition of x ray units in clinical use.

  • PDF

FRP 보강판 부착 콘크리트에서 유도초음파 모드 거동에 대한 접착층의 영향 (Effect of Bonding Layer on Guided Wave Mode Behavior in FRP Plate Bonded on Concrete)

  • 이용주;신성우
    • 비파괴검사학회지
    • /
    • 제32권1호
    • /
    • pp.34-40
    • /
    • 2012
  • 본 연구에서는 FRP 보강판 부착 콘크리트에서의 유도초음파 기본 모드의 전파 특성에 부착제인 epoxy의 두께와 물성이 미치는 영향을 알아보고자 하였으며, 이를 위해 FRP-epoxy-concrete로 구성된 다층 유도초음파 시스템을 모델링하고 모드 해석을 수행하였다. Epoxy 층의 두께와 탄성계수를 변수로 하여 해석을 수행한 결과, A0 모드에 비해 S0 모드가 epoxy 층의 두께와 탄성계수 변화에 큰 영향을 받으며, 이로부터 경계층인 Epoxy 층의 상태 평가에는 A0 모드에 비해 S0 모드가 유효하리라는 결론을 얻었다.

Development of an integrated approach for Algerian building seismic damage assessment

  • Boukri, Mehdi;Farsi, Mohammed Naboussi;Mebarki, Ahmed;Belazougui, Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.471-493
    • /
    • 2013
  • This paper presents a framework for seismic damage evaluation for Algerian buildings adapted from HAZUS approach (Hazard-United States). Capacity and fragility curves were adapted to fit the Algerian building typologies (Reinforced Concrete structures, Confined or Non-Confined Masonry, etc). For prediction purposes, it aims to estimate the damages and potential losses that may be generated by a given earthquake in a prone area or country. Its efficiency is validated by comparing the estimated and observed damages in Boumerd$\grave{e}$s city, in the aftermath of Boumerd$\grave{e}$s earthquake (Algeria: May $21^{st}$ 2003; $M_w$ = 6.8). For this purpose, observed damages reported for almost 3,700 buildings are compared to the theoretical predictions obtained under two distinct modelling of the seismic hazard. In one hand, the site response spectrum is built according to real accelerometric records obtained during the main shock. In the other hand, the effective Algerian seismic code response spectrum (RPA 99) in use by the time of the earthquake is considered; it required the prior fitting of Boumerd$\grave{e}$s site PGA (Peak Ground Acceleration) provided by Ambraseys' attenuation relationship.

A Coupled Line Impedance Transformer for High Termination Impedance with a Bandpass Filtering Response

  • Kim, Phirun;Jeong, Yongchae
    • Journal of electromagnetic engineering and science
    • /
    • 제18권1호
    • /
    • pp.41-45
    • /
    • 2018
  • In this study, a short-ended coupled line with a short-circuit stub transmission line bandpass filtering impedance transformer is presented. The general designed equations are derived on the basis of circuit theory. The design curves are provided to examine the characteristic of the proposed impedance transformer. The proposed circuit is suitable for high termination impedance. To validate the design formulas, a $400-50{\Omega}$ impedance transformer is designed and fabricated at the operating center frequency ($f_0$) of 2.6 GHz. The measured results show a good agreement with the simulation. The measured insertion and return losses are 0.6 dB and 22.5 dB at $f_0$, respectively. The measured return loss is higher than 20 dB within the passband frequency of 2.51-2.7 GHz. Moreover, the stopband attenuation is higher than 25 dB from DC to 1.64 GHz of the lower stopband and from 3.12 GHz to 6.4 GHz of the higher stopband.

6 MV 광자선의 투과성필터와 Wedge 선속을 이용한 부비강의 균등선량계획 (Homogeneous Dose Planning to Paranasal Sinus with the Partial Attenuation filters and Wedged Beams in 6 MV Photon Beam)

  • 최태진;이호준;김옥배
    • Radiation Oncology Journal
    • /
    • 제11권1호
    • /
    • pp.183-191
    • /
    • 1993
  • The homogeneous dose planning is one of the most important roles in radiation therapy. But, it is not easy to obtain a homogeneous dose to paranasal sinus region including the ethmoidal sinus with conventional irradiation techniques. In this experimental study, the authors tried to get a homogeneous dose at PNS region, but the nasal cartirage does not exceed the tolerance dose, with anterior-posterior beam and two both lateral wedged beams. Used three fields were shielded with full thickness of blocks to preserve the eye-balls and with blocks of one half value layer to create a homogeneous dose at the whole treatment volume. The dose computations are based on the three dimensonal structure with modified scatter contributions of partial shielders and attenuated beams in 6 MV photon beams. The dose distributions of mid-plane is examined with Kodak verification films and teflon-embedded TLD rod (1 mm diameter and 6 mm length) to confirm the computed dose. In our study, the whole PNS regions have shown within $85{\%}$ of the resultant isodose curves with relatively homogeneous dose distribution. The results of dose computation and measurements are agree well within $5{\%}$ uncertainties.

  • PDF

암반절리를 고려한 발파진동 영향평가 (Assessment of Blast-induced Vibration for the Stability of Discontinuous Rock Mass)

  • 박병기;전석원;박광준;도덕수;김태훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.485-492
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been Increased recently in order to analyze the effect of the blast-induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure curves estimated by theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a discontinuum dynamic analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced vibration and the stability of rock slope.

Adaptive Sliding Mode Control Synthesis of Maritime Autonomous Surface Ship

  • Lee, Sang-Do;Xu, Xiao;Kim, Hwan-Seong;You, Sam-Sang
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.306-312
    • /
    • 2019
  • This paper investigates to design a controller for maritime autonomous surface ship (MASS) by means of adaptive super-twisting algorithm (ASTA). A input-out feedback linearization method is considered for multi-input multi-output (MIMO) system. Sliding Mode Controller (SMC) is suitable for MASS subject to ocean environments due to its robustness against parameter uncertainties and disturbances. However, conventional SMC has inherent disadvantages so-called, chattering phenomenon, which resulted from the high frequency of switching terms. Chattering may cause harmful failure of actuators such as propeller and rudder of ships. The main contribution of this work is to address an appropriate controller for MASS, simultaneously controls surge and yaw motion in severe step inputs. Proposed control mechanism well provides convergence bewildered by external disturbances in the middle of steady-state responses as well as chattering attenuation. Also, the adaptive algorithm is contributed to reducing non-overestimated value of control gains. Control inputs of surge and yaw motion are displayed by smoother curves without excessive control activities of actuators. Finally, no overshoot can be seen in transient responses.

Propagating and evanescent waves in a functionally graded nanoplate based on nonlocal theory

  • Cancan Liu;Jiangong Yu;Bo Zhang;Xiaoming Zhang;Xianhui Wang
    • Advances in nano research
    • /
    • 제14권5호
    • /
    • pp.463-474
    • /
    • 2023
  • The purpose of this paper is to present the analysis of propagating and evanescent waves in functionally graded (FG) nanoplates with the consideration of nonlocal effect. The analytical integration nonlocal stress expansion Legendre polynomial method is proposed to obtain complete dispersion curves in the complex domain. Unlike the traditional Legendre polynomial method that expanded the displacement, the presented polynomial method avoids employing the relationship between local stress and nonlocal stress to construct boundary conditions. In addition, the analytical expressions of numerical integrations are presented to improve the computational efficiency. The nonlocal effect, inhomogeneity of medium and their interactions on wave propagation are studied. It is found that the nonlocal effect and inhomogeneity of medium reduce the frequency bandwidth of complex evanescent Lamb waves, and make complex evanescent Lamb waves have a higher phase velocity at low attenuation. The occurrence of intersections of propagating Lamb wave in the nonlocal homogeneous plate needs to satisfy a smaller Poisson's ratio condition than that in the classical elastic theory. In addition, the inhomogeneity of medium enhances the nonlocal effect. The conclusions obtained can be applied to the design and dynamic response evaluation of composite nanostructures.

Dynamic evolution characteristics of water inrush during tunneling through fault fracture zone

  • Jian-hua Wang;Xing Wan;Cong Mou;Jian-wen Ding
    • Geomechanics and Engineering
    • /
    • 제37권2호
    • /
    • pp.179-187
    • /
    • 2024
  • In this paper, a unified time-dependent constitutive model of Darcy flow and non-Darcy flow is proposed. The influencing factors of flow velocity are discussed, which demonstrates that permeability coefficient is the most significant factor. Based on this, the dynamic evolution characteristics of water inrush during tunneling through fault fracture zone is analyzed under the constant permeability coefficient condition (CPCC). It indicates that the curves of flow velocity and hydrostatic pressure can be divided into typical three stages: approximate high-velocity zone inside the fault fracture zone, velocity-rising zone near the tunnel excavation face and attenuation-low velocity zone in the tunnel. Furthermore, given the variation of permeability coefficient of the fault fracture zone with depth and time, the dynamic evolution of water flow in the fault fracture zone under the variable permeability coefficient condition (VPCC) is also studied. The results show that the time-related factor (α) affects the dynamic evolution distribution of flow velocity with time, the depth-related factor (A) is the key factor to the dynamic evolution of hydrostatic pressure.