• Title/Summary/Keyword: attenuation curves

Search Result 57, Processing Time 0.022 seconds

Seismic resilience evaluation of RC-MRFs equipped with passive damping devices

  • Kamaludin, Puteri Nihal Che;Kassem, Moustafa Moufid;Farsangi, Ehsan Noroozinejad;Nazri, Fadzli Mohamed;Yamaguchi, Eiki
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.391-405
    • /
    • 2020
  • The use of passive energy dissipation devices has been widely used in the construction industry to minimize the probability of damage occurred under intense ground motion. In this study, collapse margin ratio (CMR) and fragility curves are the main parameters in the assessment to characterize the collapse safety of the structures. The assessment is done on three types of RC frame structures, incorporating three types of dampers, viscoelastic, friction, and BRB dampers. The Incremental dynamic analyses (IDA) were performed by simulating an array of 20 strong ground motion (SGM) records considering both far-field and near-field seismic scenarios that were followed by fragility curves. With respect to far-field ground motion records, the CMR values of the selected frames indicate to be higher and reachable to safety margin more than those under near-field ground motion records that introduce a high devastating impact on the structures compared to far-field excitations. This implies that the near field impact affects the ground movements at the site by attenuation the direction and causing high-frequency filtration. Besides that, the results show that the viscoelastic damper gives better performance for the structures in terms of reducing the damages compared to the other energy dissipation devices during earthquakes.

The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder

  • Kocal, Tarik;Akbarov, Surkay D.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.577-601
    • /
    • 2019
  • The paper investigates the influence of the rheological parameters which characterize the creep time, the long-term values of the mechanical properties of viscoelastic materials and a form of the creep function around the initial state of a deformation of the materials of the hollow bi-layered cylinder on the dispersion of the flexural waves propagated in this cylinder. Constitutive relations for the cylinder's materials are given through the fractional exponential operators by Rabotnov. The dispersive attenuation case is considered and numerical results related to the dispersion curves are presented and discussed for the first and second modes under the first harmonic in the circumferential direction. According to these results, it is established that the viscosity of the materials of the constituents causes a decrease in the flexural wave propagation velocity in the bi-layered cylinder under consideration. At the same time, the character of the influence of the rheological parameters, as well as other problem parameters such as the thickness-radius ratio and the elastic modulus ratio of the layers' materials on the dispersion curves, are established.

Effect of Saline Flush on the Enhancement of Vascular and Liver via Saphenous Vein for Abdominal CT in Dogs

  • Kim, Song Yeon;Hwang, Tae Sung;An, Soyon;Hwang, Gunha;Go, Woohyun;Lee, Jong Bong;Lee, Hee Chun
    • Journal of Veterinary Clinics
    • /
    • v.38 no.3
    • /
    • pp.135-142
    • /
    • 2021
  • The aim of this study was to evaluate the contrast effect if a saline flush following low-volume contrast medium bolus improves vascular and parenchymal enhancement using a saphenous vein in abdominal CT for small animals. Six clinically healthy beagle dogs underwent abdominal contrast-enhanced CT. They were divided into nine groups (each group, n = 6), according to the volume of contrast medium 1, 2, and 3 mL/kg, and volume of the saline solution 0, 5, and 10 mL. Dynamic CT scanning was performed at the hepatic hilum level. The maximum contrast enhancement, time to maximum enhancement, and time to equilibrium phase were calculated from the time attenuation curves. Mean attenuation values for all groups were measured in the aorta, portal vein, and liver. After contrast enhancement, grading of image quality regarding surrounding artifacts and evaluation of the hepatic hilum structures was performed. For comparison of the effect of the contrast material and saline solution doses, differences in mean attenuation values between the contrast medium 2 mL/kg without saline flush group and the remaining groups, and between contrast medium 3 mL/kg without saline flush group and the remaining groups, were analyzed for statistical significance. There were no significant differences between with and without saline flushing at the same contrast medium dose groups. There were no significant differences in peak values between the 3 mL/kg dose of contrast medium alone and the 2 mL/kg dose of contrast medium with saline solution flush. However, there was a significant difference in peak values between the 3 mL/kg dose of the contrast medium without the saline flush group and the 2 mL/kg dose of the contrast medium alone group. Grades of the artifacts were not significantly different in the saline flush regardless of the dose of the contrast medium. Using 2 mL/kg of contrast medium with saline solution flush resulted in similar liver parenchyma attenuation, compared with using 3 mL/kg of contrast medium without saline solution flush. In CT evaluation of hepatic parenchymal diseases, using 2 mL/kg of contrast medium with saline solution flush may yield decreased risk of contrast nephropathy and cost-saving.

Wave propagation in a generalized thermo elastic plate embedded in elastic medium

  • Ponnusamy, P.;Selvamani, R.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.13-26
    • /
    • 2012
  • In this paper, the wave propagation in a generalized thermo elastic plate embedded in an elastic medium (Winkler model) is studied based on the Lord-Schulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and foundation are obtained by the traction free boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the foundation parameter. A comparison of the results for the case with no thermal effects shows well agreement with those by the membrane theory.

Wave propagation in a generalized thermo elastic circular plate immersed in fluid

  • Selvamani, R.;Ponnusamy, P.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.827-842
    • /
    • 2013
  • In this paper, the wave propagation in generalized thermo elastic plate immersed in fluid is studied based on the Lord-Shulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and fluid are obtained by the perfect-slip boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency, phase velocity and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the fluid interaction.

A Study of Sound Insulation Effect of Periodically Arranged Circular Rods (주기적 배열을 갖는 원형 봉 집합체의 차음효과해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Joo;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.319-324
    • /
    • 2000
  • Sound insulation effect of periodically arranged circular rods is studied by numerical method (BEM) and model experiment in anechoic room. Five different cylinder groups of diameter from 48 mm to 27 mm are arranged, where each group consists of 5 rows of identical rods and area ratio is kept almost the same as 60%. Comparisons of results by BEM and experiment show the band gap frequency ranges are qualitatively in agreement, while experiments gives higher attenuations. Frequency shifted attenuations (BEM results) by first group (${\phi}$48), third group (${\phi}$34) and fifth group (${\phi}$27) show that attenuation curves are in reasonable agreements for both plane wave and point source.

  • PDF

Waves propagating in railway tracks at high frequencies (철로를 따라 장거리 전파하는 고주파수 대역 파동 특성 연구)

  • Ryue, J.;Thompson, D.J.;White, P.R.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.791-796
    • /
    • 2011
  • In order to understand long range wave propagation in railway tracks, it is required to identify how far vibrations can travel along a rail. To answer this question, the attenuation characteristics of the main propagating waves are required as a function of distance. In this work, it is identified which wave types predominantly propagate on various regions of the rail cross-section. Then decay rates of propagating waves in railway tracks are investigated for frequencies up to 80 kHz. A numerical method called the Wavenumber Finite Element (WFE) method is utilized to predict dispersion curves and decay rates for a rail on a continuous foundation. In order to validate the simulated results, measurements have been performed on a test track and an operational railway track. The measured results are compared with the output of the simulations and good agreements are found between them.

  • PDF

A Study on the Evaluation of Semi-Anechoic Chamber Characteristics -mainly on horizontal polarization- (전파반무향실의 특성평가에 관한 연구 - 수평편파를 중심으로 -)

  • 김동일;김민석
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • We are confronted with the serious EMI(electromagnetic interference) problems in company with the development of electronic equipments. Accordingly it is also required to construct some anechoic chambers for EMI measurement. Furthermore it is very important to evaluate the chamber characteristics in advance of its construction. For that purpose we have analyzed the characteristics by computer simulation in base on the image method, and compared the results with the measured ones. In case of 3-meter method as a result, the curved line of height pattern of open site varies similarly as that of height pattern of anechoic chamber. When we measure the electromagnetic strength and can get the height pattern curves by frequencies, we utilized it effectively because we can protect instrumental errors in measurement. On the other hand, there is a little difference in site attenuation above 700MHz. When the ferrite grid was used however, the calculated values agree well with the measured values up to 1000MHz with the exception of 30-40 MHz range. The reason is that we don't consider the antenna coupling in the low frequencies of 30-100MHz range.

  • PDF

On the use of the wave finite element method for passive vibration control of periodic structures

  • Silva, Priscilla B.;Mencik, Jean-Mathieu;Arruda, Jose R.F.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.299-315
    • /
    • 2016
  • In this work, a strategy for passive vibration control of periodic structures is proposed which involves adding a periodic array of simple resonant devices for creating band gaps. It is shown that such band gaps can be generated at low frequencies as opposed to the well known Bragg scattering effects when the wavelengths have to meet the length of the elementary cell of a periodic structure. For computational purposes, the wave finite element (WFE) method is investigated, which provides a straightforward and fast numerical means for identifying band gaps through the analysis of dispersion curves. Also, the WFE method constitutes an efficient and fast numerical means for analyzing the impact of band gaps in the attenuation of the frequency response functions of periodic structures. In order to highlight the relevance of the proposed approach, numerical experiments are carried out on a 1D academic rod and a 3D aircraft fuselage-like structure.

Dust Radiative Transfer Model of Spectral Energy Distributions in Clumpy, Galactic Environments

  • Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2018
  • The shape of a galaxy's spectral energy distribution ranging from ultraviolet (UV) to infrared (IR) wavelengths provides crucial information about the underlying stellar populations, metal contents, and star-formation history. Therefore, analysis of the SED is the main means through which astronomers study distant galaxies. However, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the mid-IR and Far-IR. I present the updated 3D Monte-Carlo radaitive transfer code MoCafe to compute the radiative transfer of stellar, dust emission through a dusty medium. The code calculates the emission expected from dust not only in pure thermal equilibrium state but also in non-thermal equilibrium state. The stochastic heating of very small dust grains and/or PAHs is calculated by solving the transition probability matrix equation between different vibrational, internal energy states. The calculation of stochastic heating is computationally expensive. A pilot study of radiative transfer models of SEDs in clumpy (turbulent), galactic environments, which has been successfully used to understand the Calzetti attenuation curves in Seon & Draine (2016), is also presented.

  • PDF