• Title/Summary/Keyword: attenuation correction

Search Result 181, Processing Time 0.035 seconds

In fluency on Refraction and Phase Cancellation Effect in Ultrasonic CT and its Correction (초음파 CT에서의 굴절 및 위상 상쇄 효과의 영향과 그 보정법)

  • 최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.6
    • /
    • pp.33-40
    • /
    • 1982
  • Although ultrasonic CT is one of the useful techniques for tissue characterization, the reconstructed images, such as the velocity distribution and attenuation constant distribution, are degraded by reflection and refraction of ultrasonic beam. This paper studied the degradation effects on attenuation images using agar gel phantoms which were developed to evaluate ultrasonic CT. We found that the reconstructed attenuation constants at the center of the phantoms were less than the actual values by 0.6 dB/cm when phantom velocity differs by 25 m/s from surrounding saline. We also studied a correction method for refraction and phase cancellation effects, where the correction was made using the maximum value in the received subdata, as obtained by sub-arraying microprobes located at each sampling point. Using this method, we could obtain an improvement in the reconstructed image by the correction on the attenuation effect.

  • PDF

A Study on the Correction of Beam Pattern for the Ultrasonic Attenuation Coefficient Estimation (초음파 감쇠계수 주정에 있어서 빔 형태의 보정에 관한 연구)

  • Kim, Gi-Uk;Choe, Heung-Ho;Hong, Seung-Hong
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 1987
  • In estimating the freguency-dependent attenuation coefficient, we analyzed the range-dependent ultrasonic beam and proposed the method of calculating the experimental equation of beam pattern in order to reduce the error on the influence of beam pattern. These experimental equations are divided into the spectral centroid and the spec ural standard deviation slope according to axial propagation length. These are repnesented by the first-order equation in the near field of the beam and the second- order eqLlatlon In the far field. In order to prove the validity of this method, the attenuation coefficients of the non-corrected ease and the corrected case are compared. Using the reflected signal from acryle plate, the attenuation coefficients were estimated by the spectral shift method ann the spectral difference method. The result shows attenuation coeffi talents after correction are better than attenuation coefficients before correction. And this method can be applied In vivo measurement.

  • PDF

Determination of Attenuation Collection Methods According to the Type of Radioactive Waste Drums (방사성폐기물드럼 종류별 감쇠보정방법의 결정)

  • Kwak, Sang-Soo;Choi, Byung-I1;Yoon, Suk-Jung;Lee, Ik-Whan;Kang, Duck-Won;Sung, Ki-Bang
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.309-317
    • /
    • 1997
  • The measured radioactivity of gamma-emitting radionuclides in each radioactive waste drum using the non-destructive waste assay method is underestimated than real radioactivity in radioactive waste drum because the gamma-rays are attenuated within the medium. Therefore, the measured radioactivity should be corrected for the attenuation of gamma-rays. For the correction of the attenuation of gamma-rays, the attenuation correction method should be applied differently by considering the distribution and density of medium in radioactive wastes drum generated from nuclear power plants. In this study, the model drums were fabricated for simulating five types of radioactive waste drums generated from nuclear power plant and the optimum methods of the attenuation correction were experimentally determined to analyze the activity of radionuclides in the waste drum accurately using the segmented gamma scanning system. With the determination of the attenuation correction methods from the experimental results the transmission method and the average density method for the miscellaneous waste drum, the transmission method and the differential peak absorption method for the shielded miscellaneous waste drum were used to measure the density of medium in waste drums. Also, the average density method and the differential peak absorption method for the spent resin drum, the paraffin solidified drum, and the spent filter drum were used.

  • PDF

Effect of filters and reconstruction method on Cu-64 PET image

  • Lee, Seonhwa;Kim, Jung min;Kim, Jung Young;Kim, Jin Su
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.65-71
    • /
    • 2017
  • To assess the effects of filter and reconstruction of Cu-64 PET data on Siemens scanner, the various reconstruction algorithm with various filters were assessed in terms of spatial resolution, non-uniformity (NU), recovery coefficient (RC), and spillover ratio (SOR). Image reconstruction was performed using filtered backprojection (FBP), 2D ordered subset expectation maximization (OSEM), 3D reprojection algorithm (3DRP), and maximum a posteriori algorithms (MAP). For the FBP reconstruction, ramp, butterworth, hamming, hanning, or parzen filters were used. Attenuation or scatter correction were performed to assess the effect of attenuation and scatter correction. Regarding spatial resolution, highest achievable volumetric resolution was $3.08mm^3$ at the center of FOV when MAP (${\beta}=0.1$) reconstruction method was used. SOR was below 4% for FBP when ramp, Hamming, Hanning, or Shepp-logan filter were used. The lowest NU (highest uniform) after attenuation & scatter correction was 5.39% when FBP (parzen filter) was used. Regarding RC, 0.9 < RC < 1.1 was obtained when OSEM (iteration: 10) was used when attenuation and scatter correction were applied. In this study, image quality of Cu-64 on Siemens Inveon PET was investigated. This data will helpful for the quantification of Cu-64 PET data.

Quantitative Comparisons between CT and $^{68}Ge$ Transmission Attenuation Corrected $^{18}F-FDG$ PET Images: Measured Attenuation Correction vs. Segmented Attenuation Correction (CT와 $^{68}Ge$ 감쇠보정 $^{18}F-FDG$ PET 영상의 정량적 비교: 측정감쇠보정대 분할감쇠보정)

  • Choi, Joon-Young;Woo, Sang-Keun;Choi, Yong;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.49-53
    • /
    • 2007
  • Purpose: It was reported that CT-based measured attenuation correction (CT-MAC) produced radioactivity concentration values significantly higher than $^{68}Ge$-based segmented attenuation correction (Ge-SAC) in PET images. However, it was unknown whether the radioactivity concentration difference resulted from different sources (CT vs. Ge) or types (MAC vs. SAC) of attenuation correction (AC). We evaluated the influences of the source and type of AC on the radioactivity concentration differences between reconstructed PET images in normal subjects and patients. Material and Methods: Five normal subjects and 35 patients with a known or suspected cancer underwent $^{18}F-FDG$ PET/CT. In each subject, attenuation corrected PET images using OSEM algorithm (28 subsets, 2 iterations) were reconstructed by 4 methods: CT-MAC, CT-SAC, Ge-MAC, and Ge-SAC. The physiological uptake in normal subjects and pathological uptake in patients were quantitatively compared between the PET images according to the source and type of AC. Results: The SUVs of physiological uptake measured in CT-MAC PET images were significantly higher than other 3 differently corrected PET images. Maximum SUVs of the 145 foci with abnormal FDG uptake in CT-MAC images were significantly highest among 4 differently corrected PET images with a difference of 2.4% to 5.1% (p<0.001). The SUVs of pathological uptake in Ge-MAC images were significantly higher than those in CT-SAC and Ge-MAC PET images (p<0.001). Conclusion: Quantitative radioactivity values were highest in CT-MAC PET images. The adoption of MAC may make a more contribution than the adoption of CT attenuation map to such differences.

Comparison of Attenuation Correction Methods for Brain SPECT Ima (Brain SPECT 영상의 Attenuation Correction 방법들에 대한 비교)

  • Jo, Jin U;Kim, Chang Ho;Na, Soo Kyung;Lee, Gui Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.120-125
    • /
    • 2012
  • Purpose : The purpose of this study was to compare count between Chang's method and CT-based attenuation correction (AC-CT) among the attenuation correction (AC) methods for non-attenuation correction (AC-non) images of Brain SPECT (Single Photon Emission Computed Tomography). Materials and Methods : We injected $^{99m}Tc$ 37Mbq in a Hoffman 3D phantom filled with distilled water in the phantom study, and injected intravenously $^{99m}Tc$-HMPAO 740Mbq in a normal volunteer in the patient study, and then obtained Brain SPECT images with Symbia T6 of Siemens and conducted quantitative brain analysis. Transverse images to which each method was applied were rebuilt at the same position, and 6 regions of interest (ROI) were drawn on each of Slice No. 10, 20 and 30 and then the counts of AC-non, AC-CT and Chang's method were compared. Results : The mean counts of AC-non, AC-CT and Chang's method were $4606.8{\pm}511.3$, $16794.6{\pm}2429.4$, and $8752.6{\pm}896.5$, respectively, in the phantom study and $5460.8{\pm}519.6$, $15320{\pm}1171.6$ and $12795{\pm}1422.1$, respectively, in the patient study. In the phantom study, the ratio of AC-CT to AC-non was 3.70 and the ratio of Chang's method to AC-non was 1.92, and in the patient study, they were 2.85 and 2.38, respectively. Conclusion : From this study, we found that AC-CT makes higher AC than Chang's method. In addition, when Chang's method was used, AC in the patient study was higher than that in the phantom study. These results need to be considered also in other examinations.

  • PDF

ALGEBRAIC CORRECTION FOR METAL ARTIFACT REDUCTION IN COMPUTED TOMOGRAPHY

  • Jeon, Kiwan;Kang, Sung-Ho;Ahn, Chi Young;Kim, Sungwhan
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.157-166
    • /
    • 2014
  • If there are metals located in the X-ray scanned object, a point outside the metals has its range of projection angle at which projections passing through the point are disturbed by the metals. Roughly speaking, this implies that attenuation information at the point is missing in the blocked projection range. So conventional projection completion MAR algorithms to use the undisturbed projection data on the boundary of the metaltrace is less efficient in reconstructing the attenuation coefficient in detailed parts, in particular, near the metal region. In order to overcome this problem, we propose the algebraic correction technique (ACT) to utilize a pre-reconstructed interim image of the attenuation coefficient outside the metal region which is obtained by solving a linear system designed to reduce computational costs. The reconstructed interim image of the attenuation coefficient is used as prior information for MAR. Numerical simulations support that the proposed correction technique shows better performance than conventional inpainting techniques such as the total variation and the harmonic inpainting.

Comparison of SUV for PET/MRI and PET/CT (인체 각 부위의 PET/MRI와 PET/CT의 SUV 변화)

  • Kim, Jae Il;Jeon, Jae Hwan;Kim, In Soo;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.10-14
    • /
    • 2013
  • Purpose: Due to developed simultaneous PET/MRI, it has become possible to obtain more anatomical image information better than conventional PET/CT. By the way, in the PET/CT, the linear absorption coefficient is measured by X-ray directly. However in case of PET/MRI, the value is not measured from MRI images directly, but is calculated by dividing as 4 segmentation ${\mu}-map$. Therefore, in this paper, we will evaluate the SUV's difference of attenuation correction PET images from PET/MRI and PET/CT. Materials and Methods: Biograph mCT40 (Siemens, Germany), Biograph mMR were used as a PET/CT, PET/MRI scanner. For a phantom study, we used a solid type $^{68}Ge$ source, and a liquid type $^{18}F$ uniformity phantom. By using VIBE-DIXON sequence of PET/MRI, human anatomical structure was divided into air-lung-fat-soft tissue for attenuation correction coefficient. In case of PET/CT, the hounsfield unit of CT was used. By setting the ROI at five places of each PET phantom images that is corrected attenuation, the maximum SUV was measured, evaluated %diff about PET/CT vs. PET/MRI. In clinical study, the 18 patients who underwent simultaneous PET/CT and PET/MRI was selected and set the ROI at background, lung, liver, brain, muscle, fat, bone from the each attenuation correction PET images, and then evaluated, compared by measuring the maximum SUV. Results: For solid $^{68}Ge$ source, SUV from PET/MRI is measured lower 88.55% compared to PET/CT. In case of liquid $^{18}F$ uniform phantom, SUV of PET/MRI as compared to PET/CT is measured low 70.17%. If the clinical study, the background SUV of PET/MRI is same with PET/CT's and the one of lung was higher 2.51%. However, it is measured lower about 32.50, 40.35, 23.92, 13.92, 5.00% at liver, brain, muscle, fat, femoral head. Conclusion: In the case of a CT image, because there is a linear relationship between 511 keV ${\gamma}-ray$ and linear absorption coefficient of X-ray, it is possible to correct directly the attenuation of 511 keV ${\gamma}-ray$ by creating a ${\mu}$map from the CT image. However, in the case of the MRI, because the MRI signal has no relationship at all with linear absorption coefficient of ${\gamma}-ray$, the anatomical structure of the human body is divided into four segmentations to correct the attenuation of ${\gamma}-rays$. Even a number of protons in a bone is too low to make MRI signal and to localize segmentation of ${\mu}-map$. Therefore, to develope a proper sequence for measuring more accurate attenuation coefficient is indeed necessary in the future PET/MRI.

  • PDF

Improved Activity Estimation using Combined Scatter and Attenuation Correction in SPECT (단일광자방출단층촬영 영상에서 산란 및 감쇠 보정에 위한 절대방사능 측정)

  • Lee, Jeong-Rim;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Seong-Wun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.382-390
    • /
    • 1998
  • Purpose: The purpose of this study was to evaluate the accuracy of radioactivity quantitation in Tc-99m SPECT by using combined scatter and attenuation correction. Materials and Methods: A cylindrical phantom which simulates tumors (T) and normal tissue (B) was filled with varying activity ratios of Tc-99m. We acquired emission scans of the phantom using a three-headed SPECT system (Trionix, Inc.) with two energy windows (photopeak window: $126{\sim}154keV$ and scatter window: $101{\sim}123keV$). We performed the scatter correction with dual-energy window subtraction method (k=0.4) and Chang attenuation correction. Three sets of SPECT images were reconstructed using combined scatter and attenuation correction (SC+AC), attenuation correction (AC) and without any correction (NONE). We compared T/B ratio, image contrast [(T-B)/(T+B)] and absolute radioactivity with true values. Results: SC+AC images had the highest mean values of T/B ratios. Image contrast was 0.92 in SC+AC, which was close to the true value of 1, and higher than AC (0.77) or NONE (0.80). Errors of true activity by SPECT images ranged from 1 to 11% for SC+AC, $22{\sim}47%$ for AC, and $2{\sim}16%$ for NONE in a phantom which was located 2.4cm from the phantom surface. In a phantom located 10.0cm from the surface, SC+AC underestimated by 24%, NONE 40%. However, AC overestimated by 10%. Conclusion: We conclude that accurate SPECT activity quantitation of Tc-99m distribution can be achieved by dual window scatter correction combind with attenuation correction.

  • PDF

Assessment of Attenuation Correction Techniques with a $^{137}Cs$ Point Source ($^{137}Cs$ 점선원을 이용한 감쇠 보정기법들의 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Son, Hye-Kyoung;Park, Yun-Young;Park, Hae-Joung;Yun, Mi-Jin;Lee, Jong-Doo;Jung, Hae-Jo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.57-68
    • /
    • 2005
  • Purpose: The objective of this study was to assess attenuation correction algorithms with the $^{137}Cs$ point source for the brain positron omission tomography (PET) imaging process. Materials & Methods: Four different types of phantoms were used in this study for testing various types of the attenuation correction techniques. Transmission data of a $^{137}Cs$ point source were acquired after infusing the emission source into phantoms and then the emission data were subsequently acquired in 3D acquisition mode. Scatter corrections were performed with a background tail-fitting algorithm. Emission data were then reconstructed using iterative reconstruction method with a measured (MAC), elliptical (ELAC), segmented (SAC) and remapping (RAC) attenuation correction, respectively. Reconstructed images were then both qualitatively and quantitatively assessed. In addition, reconstructed images of a normal subject were assessed by nuclear medicine physicians. Subtracted images were also compared. Results: ELEC, SAC, and RAC provided a uniform phantom image with less noise for a cylindrical phantom. In contrast, a decrease in intensity at the central portion of the attenuation map was noticed at the result of the MAC. Reconstructed images of Jaszack and Hoffan phantoms presented better quality with RAC and SAC. The attenuation of a skull on images of the normal subject was clearly noticed and the attenuation correction without considering the attenuation of the skull resulted in artificial defects on images of the brain. Conclusion: the complicated and improved attenuation correction methods were needed to obtain the better accuracy of the quantitative brain PET images.