• 제목/요약/키워드: attenuated

검색결과 2,477건 처리시간 0.025초

Effects of Whole Body Irradiation on Morphine, DAMGO, DPDPE, U50,488H and $\beta$-endorphin-Induced Antinociception

  • Park, Tae-Won;Kim, Jin-Kyu;Jeong, Jae-Soo;Kim, Tae-Wan;Cho, Young-Kyung;Kim, Kyung-Nyun;Chung, Ki-Myung
    • International Journal of Oral Biology
    • /
    • 제37권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Opioid receptors have been pharmacologically classified as ${\mu}$, ${\delta}$, ${\kappa}$ and ${\varepsilon}$. We have recently reported that the antinociceptive effect of morphine (a ${\mu}$-opioid receptor agonist), but not that of ${\beta}$-endorphin (a novel ${\mu}/{\varepsilon}$-opioid receptor agonist), is attenuated by whole body irradiation (WBI). It is unclear at present whether WBI has differential effects on the antinociceptive effects of ${\mu}-$, ${\delta}-$, ${\kappa}-$ and ${\varepsilon}$-opioid receptor agonists. In our current experiments, male ICR mice were exposed to WBI (5Gy) from a $^{60}Co$ gamma-source and the antinociceptive effects of opioid receptor agonists were assessed two hours later using the hot water ($52^{\circ}C$) tail-immersion test. Morphine and $D-Ala^2$, $N-Me-Phe^4$, Gly-olenkephalin (DAMGO), [$D-Pen^2-D-Pen^5$] enkephalin (DPDPE), trans-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide (U50,488H), and ${\beta}$-endorphin were tested as agonists for ${\mu}$, ${\delta}$, ${\kappa}$, and ${\varepsilon}$-opioid receptors, respectively. WBI significantly attenuated the antinociceptive effects of morphine and DAMGO, but increased those of ${\beta}$-endorphin. The antinociceptive effects of DPDPE and U50,488H were not affected by WBI. In addition, to more preciously understand the differential effects of WBI on ${\mu}-$ and ${\varepsilon}$-opioid receptor agonists, we assessed pretreatment effects of ${\beta}$-funaltrexamine (${\beta}$-FNA, a ${\mu}$-opioid receptor antagonist) or ${\beta}$-$endorphin_{1-27}$ (${\beta}$-$EP_{1-27}$, an ${\varepsilon}$-opioid receptor antagonist), and found that pretreatment with ${\beta}$-FNA significantly attenuated the antinociceptive effects of morphine and ${\beta}$-endorphin by WBI. ${\beta}$-$EP_{1-27}$ significantly reversed the attenuation of morphine by WBI and significantly attenuated the increased effects of ${\beta}$-endorphin by WBI. The results demonstrate differential sensitivities of opioid receptors to WBI, especially for ${\mu}-$ and ${\varepsilon}$-opioid receptors.

Aged garlic extract enhances exercise-mediated improvement of metabolic parameters in high fat diet-induced obese rats

  • Seo, Dae Yun;Lee, SungRyul;Figueroa, Arturo;Kwak, Yi Sub;Kim, Nari;Rhee, Byoung Doo;Ko, Kyung Soo;Bang, Hyun Seok;Baek, Yeong Ho;Han, Jin
    • Nutrition Research and Practice
    • /
    • 제6권6호
    • /
    • pp.513-519
    • /
    • 2012
  • Aged garlic extract (AGE) is known to have a protective effect against immune system, endothelial function, oxidative stress and inflammation. We examined the effects of exercise with and without aged garlic extract administration on body weight, lipid profiles, inflammatory cytokines, and oxidative stress marker in high-fat diet (HFD)-induced obese rats. Forty-five Sprague-Dawley rats were fed either a HFD (HFD, n = 40) or a normal diet (ND, n = 5) for 6 weeks and thereafter randomized into ND (n = 5), HFD (n = 10), HFD with AGE (n = 10), HFD with Exercise (n = 10), or HFD with Exercise+AGE (n = 10) for 4 weeks. AGE groups were administered at a dose of 2.86 g/kg body weight, orally. Exercise consisted of running 15-60 min 5 days/week with gradually increasing intensity. AGE (P<0.01), Exercise, and Exercise+AGE (P<0.001) attenuated body weight gain and food efficiency ratio compared to HFD. Visceral fat and liver weight gain were attenuated (P<0.05) with all three interventions with a greater effect on visceral fat in the Exercise+AGE than AGE (P<0.001). In reducing visceral fat (P<0.001), epididymal fat (P<0.01) and liver weight (P<0.001), Exercise+AGE was effective, but exercise showed a stronger suppressive effect than AGE. Exercise+AGE showed further additive effects on reducing visceral fat and liver weight (P<0.001). AGE significantly attenuated the increase in total cholesterol and low-density lipoprotein-cholesterol compared with HFD (P<0.05). Exercise+AGE attenuated the increase in triglycerides compared with HFD (P<0.05). Exercise group significantly decrease in C-reactive protein (P<0.001). These results suggest that AGE supplementation and exercise alone have anti-obesity, cholesterol lowering, and anti-inflammatory effects, but the combined intervention is more effective in reducing weight gain and triglycerides levels than either intervention alone.

A study of the relationship between clinical phenotypes and plasma iduronate-2-sulfatase enzyme activities in Hunter syndrome patients

  • Lee, Ok-Jeong;Kim, Su-Jin;Sohn, Young-Bae;Park, Hyung-Doo;Lee, Soo-Youn;Kim, Chi-Hwa;Ko, Ah-Ra;Yook, Yeon-Joo;Lee, Su-Jin;Park, Sung-Won;Kim, Se-Hwa;Cho, Sung-Yoon;Kwon, Eun-Kyung;Han, Sun-Ju;Jin, Dong-Kyu
    • Clinical and Experimental Pediatrics
    • /
    • 제55권3호
    • /
    • pp.88-92
    • /
    • 2012
  • Purpose: Mucopolysaccharidosis type II (MPS II or Hunter syndrome) is a rare lysosomal storage disorder caused by iduronate-2-sulfatase (IDS) deficiency. MPS II causes a wide phenotypic spectrum of symptoms ranging from mild to severe. IDS activity, which is measured in leukocyte pellets or fibroblasts, was reported to be related to clinical phenotype by Sukegawa-Hayasaka et al. Measurement of residual plasma IDS activity using a fluorometric assay is simpler than conventional measurements using skin fibroblasts or peripheral blood mononuclear cells. This is the first study to describe the relationship between plasma IDS activity and clinical phenotype of MPS II. Methods: We hypothesized that residual plasma IDS activity is related to clinical phenotype. We classified 43 Hunter syndrome patients as having attenuated or severe disease types based on clinical characteristics, especially intellectual and cognitive status. There were 27 patients with the severe type and 16 with the attenuated type. Plasma IDS activity was measured by a fluorometric enzyme assay using 4-methylumbelliferyl- ${\alpha}$-iduronate 2-sulphate. Results: Plasma IDS activity in patients with the severe type was significantly lower than that in patients with the attenuated type ($p$=0.006). The optimal cut-off value of plasma IDS activity for distinguishing the severe type from the attenuated type was 0.63 $nmol{\cdot}4hr^{-1}{\cdot}mL^{-1}$. This value had 88.2% sensitivity, 65.4% specificity, and an area under receiver-operator characteristics (ROC) curve of 0.768 (ROC curve analysis; $p$=0.003). Conclusion: These results show that the mild phenotype may be related to residual lysosomal enzyme activity.

Effects of Dexamethasone and DHEA on the Responses of Rat Cerebral Cortical Astrocytes to Lipopolysaccharide and Antimycin A

  • Choi, Sang-Hyun;Kim, Hyung-Gun;Kim, Chang-Keun;Park, Nan-Hyang;Choi, Dong-Hee;Shim, In-Sop;Chun, Boe-Gwun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권2호
    • /
    • pp.127-135
    • /
    • 1999
  • As part of a study on the effects of dexamethasone and dehydroepiandrosterone (DHEA) on the biological roles of astrocytes in brain injury, this study evaluated the effects of dexamethasone and DHEA on the responses of primary cultured rat cortical astrocytes to lipopolysaccharide (LPS) and antimycin A. Dexamethasone decreased spontaneous release of LDH from astrocytes, and the dexamethasone effect was inhibited by DHEA. However, the inhibitory effect of DHEA on the dexamethasone-induced decrease of LDH release was not shown in astrocytes treated with LPS, and antimycin A-induced LDH release was not affected by dexamethasone or DHEA. Unlike dexamethasone, DHEA increased MTT value of astrocytes and also attenuated the antimycin A-induced decrease of MTT value. Glutamine synthetase activity of astrocytes was not affected by DHEA or LPS but increased by dexamethasone, and the dexamethasone- dependent increase was attenuated by DHEA. However, antimycin A markedly decreased glutamine synthetase activity, and the antimycin A effect was not affected by dexamethasone or DHEA. Basal release of $[^3H]arachidonic$ acid from astrocytes was moderately increased by LPS and markedly by antimycin A. Dexamethasone inhibited the basal and LPS-dependent releases of $[^3H]arachidonic$ acid, but neither dexamethasone nor DHEA affected antimycin A-induced $[^3H]arachidonic$ acid release. Basal IL-6 release from astrocytes was not affected by dexamethasone or DHEA but markedly increased by LPS and antimycin A. LPS-induced IL-6 release was attenuated by dexamethasone but was little affected by DHEA, and antimycin A-induced IL-6 release was attenuated by DHEA as well as dexamethasone. At the concentration of dexamethasone and DHEA which does not affect basal NO release from astrocytes, they moderately inhibited LPS-induced NO release but little affected antimycin A-induced decrease of NO release. Taken together, these results suggest that dexamethasone and DHEA, in somewhat different manners, modulate the astrocyte reactivity in brain injuries inhibitorily.

  • PDF

Neuroprotective Effects of Methanol Extract of Sophorae Subprostratae Radix on Glutamate Excitotoxicity in PC12 Cells and Organotypic Hippocampal Slice Cultures

  • Kim, Soo-Man;Shim, Eun-Sheb;Kim, Bum-Hoi;Sohn, Young-Joo;Kim, Sung-Hoon;Jung, Hyuk-Sang;Sohn, Nak-Won
    • 대한한의학회지
    • /
    • 제29권5호
    • /
    • pp.29-40
    • /
    • 2008
  • Objectives : It has been reported that Sophorae Subprostratae Radix (SSR) has a neuroprotective effect on cerebral ischemia in animals. In the present study, the authors investigated the neuroprotective effect of SSR on glutamate excitotoxicity. Glutamate excitotoxicity was induced by using NMDA, AMPA, and KA in PC12 cells and in organotypic hippocampal slice cultures. Methods :Methanolic extract of SSR was added at 0.5, 5, and 50 ${\mu}$g/ml to culture media for 24 hours. The effects of SSR were evaluated by measuring of cell viability, PI-stained neuronal cell death, TUNEL-positive cells, and MAP-2 immunoreactivity. Results : SSR increased PC12 cell viabilities significantly against AMPA-induced excitotoxicity, but not against NMDA-induced or KA-induced excitotoxicity. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in the CA1, CA3, and DG hippocampal regions and reduced TUNEL-positive cells significantly in CA1 and DG regions. In organotypic hippocampal slice cultures damaged by AMPA-induced excitotoxicity, SSR attenuated neuronal cell death and reduced TUNEL-positive cell numbers significantly in the CA1 and DG regions. In organotypic hippocampal slice cultures damaged by KA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in CA3, but did not reduce TUNEL-positive cell numbers in CA1, CA3 or DG. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated pyramidal neuron neurite retraction and degeneration in CA1. Conclusions : These results suggest that the neuroprotective effects of SSR are related to antagonistic effects on the NMDA and AMPA receptors of neuronal cells damaged by excitotoxicity and ischemia.

  • PDF

Protective Effect of Phosphatidylcholine on Lipopolysaccharide-Induced Acute Inflammation in Multiple Organ Injury

  • Jung, Yoon Yang;Nam, Yunsung;Park, Yong Seol;Lee, Ho Sung;Hong, Soon Auck;Kim, Beom Keun;Park, Eon Sub;Chung, Yoon Hee;Jeong, Ji Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권3호
    • /
    • pp.209-216
    • /
    • 2013
  • Soybean polyunsaturated phosphatidylcholine (PC) is thought to exert anti-inflammatory activities and has potent effects in attenuating acute renal failure and liver dysfunction. The aim of this study was to investigate the effects of PC in protecting multiple organ injury (MOI) from lipopolysaccharide (LPS). Six groups of rats (N=8) were used in this study. Three groups acted as controls and received only saline, hydrocortisone (HC, 6 mg/kg, i.v.) or PC (600 mg/kg, i.p.) without LPS (15 mg/kg, i.p.) injections. Other 3 groups, as the test groups, were administered saline, HC or PC in the presence of LPS. Six hours after the LPS injection, blood and organs (lung, liver and kidney) were collected from each group to measure inflammatory cytokines and perform histopathology and myeloperoxidase (MPO) assessment. Serum cytokines (TNF-${\alpha}$, IL-6 and IL-10) and MPO activities were significantly increased, and significant histopathological changes in the organs were observed by LPS challenge. These findings were significantly attenuated by PC or HC. The treatment with PC or HC resulted in a significant attenuation on the increase in serum levels of TNF-${\alpha}$ and IL-6, pro-inflammatory cytokines, while neither PC nor HC significantly attenuated serum levels of IL-10, anti-inflammatory cytokine. In the organs, the enhanced infiltration of neutrophils and expression of ED2 positive macrophage were attenuated by PC or HC. Inductions of MPO activity were also significantly attenuated by PC or HC. From the findings, we suggest that PC may be a functional material for its use as an anti-inflammatory agent.

노령 흰쥐의 뇌허혈 손상시 양격산화탕(凉膈散火湯)이 뇌해마의 c-Fos 및 c-Jun 발현에 미치는 영향 (Effect of Yanggyuksanhwa-tang on c-Fos and c-Jun Expression in Ischemic Damaged Hippocampus of Aged BCAO Rats)

  • 김성준;신정원;손영주;정혁상;원란;손낙원
    • 대한한방내과학회지
    • /
    • 제24권2호
    • /
    • pp.337-347
    • /
    • 2003
  • This study investigated the effect of Yanggyuksanhwa-tang on cerebral ischemia of the rats. Considering age-related impact on cerebral ischemia, aged rats (18 months old) were used for this study. Ischemic damage was induced by the transient occlusion of bilateral common carotid arteries(BCAO) under the hypotension. Yanggyuksanhwa-tang was administered twice orally. Then changes of immunohistochemical expression of c-fos and c-jun in ischemic damaged hippocampus were observed. The BCAO in aged rats led significant increase of c-fos expression in CA1 and DG of hippocampus. While the treatment of Yanggyuksanhwa-tang significantly attenuated the increase of c-fos expression in CA1 hippocampus following BCAO ischemia. Depending on changes of the normalized optical density(NOD) of immunohistochemical c-fos expression, the treatment of Yanggyuksanhwa-tang significantly attenuated the increase of NOD in CA1 and DG of hippocampus. And there was not changes in CA2 and CA3 hippocampus with respect to the control BCAO group. The BCAO in aged rats led significant increase of c-jun expression in CA1 hippocampus. While the treatment of Yanggyuksanhwa-tang significantly attenuated the increase of c-jun expression in CA1 hippocampus following BCAO ischemia. Depending on changes of the NOD of immunohistochemical c-jun expression, the treatment of Yanggyuksanhwa-tang significantly attenuated the increase of NOD in CA1 hippocampus. And there was not changes in CA2, CA3 and DG of hippocampus with respect to the control BCAO group.

  • PDF

화학적 허혈에 의해 손상된 마우스 간세포에 대한 hydrogen sulfide의 간세포 보호 효과 (Protection of Primary Cultured Mouse Hepatocytes from Chemical Hypoxia-induced Injury by Hydrogen Sulfide)

  • 이민영
    • 생명과학회지
    • /
    • 제23권11호
    • /
    • pp.1342-1350
    • /
    • 2013
  • 본 연구는 화학적 허혈에 의해 손상된 마우스 간세포에서 hydrogen sulfide ($H_2S$)의 효과를 규명하기 위해 수행되었다. 본 연구에서 허혈 모방 화합물로 알려져 있는 cobalt chloride ($CoCl_2$)는 간세포 손상을 시간 및 농도 의존적으로 유의성 있게 증가 시켰다. $CoCl_2$에 의한 간세포 손상은 Sodium sulfide (NaHS, $H_2S$ 공여제)의 전처리에 의해 유의적으로 감소 되었다. $CoCl_2$는 세포 내 활성산소(reactive oxygen species, ROS)의 농도를 증가시켰으며, 이는 NaHS 및 N-acetyl-cysteine (NAC, a ROS 제거제)에 의해 감소하였다. 또한, $CoCl_2$에 의해 증가된 p38 MAPK 인산화가 NaHS 및 NAC에 의해 억제되었다. $CoCl_2$에 의해 증가된 Bax/Bcl-2 비율은 NaHS, NAC 및 SB 203580 (p38 MAPK 저해제)에 의해 차단되었으며, $CoCl_2$에 의해 유발된 간세포의 손상 또한 NaHS, NAC 및 SB 203580의 전처리에 의해 억제되었다. NaHS는 $CoCl_2$에 의해 증가된 COX-2의 발현을 억제하였다. 또한, NaHS의 효과와 유사하게 $CoCl_2$에 의해 증가된 COX-2의 발현이 NAC에 의해 억제되었다. 더욱이, NS-398 (COX-2 선택적 억제제)는 $CoCl_2$에 의한 Bax/Bcl-2 비율의 증가를 억제하였을 뿐 아니라, 간세포의 세포 손상 또한 억제하였다. 결론적으로, $H_2S$는 초대배양 된 마우스 간세포에서 $CoCl_2$에 의해 유발된 간세포의 손상을 ROS에 의해 유발된 p38 MAPK 및 COX-2 경로의 활성화를 억제함으로써 세포보호효과를 수행하는 것을 알 수 있었다.

18β-Glycyrrhetinic acid가 lipopolysaccharide에 의한 생쥐 뇌조직의 염증성 사이토카인과 해마신경세포 자연사에 미치는 영향 (Effects of 18β-glycyrrhetinic acid on pro-inflammatory cytokines and neuronal apoptosis in the hippocampus of lipopolysaccharide-treated mice)

  • 이지승;권만재;권수현;김지호;문지영;조윤정;신정원;이종수;손낙원
    • 대한본초학회지
    • /
    • 제31권6호
    • /
    • pp.73-81
    • /
    • 2016
  • Objectives : $18{\beta}$-Glycyrrhetinic acid (18betaGA) is an metabolite of glycyrrhizin in Glycyrrhiza (licorice). The present study investigated anti-inflammatory and anti-apoptosis effect of 18betaGA on the brain tissue of lipopolysaccharide (LPS)-treated C57BL/6 mice. Methods : 18betaGA was administered orally with low (30 mg/kg) and high (100 mg/kg) doses for 3 days prior to LPS (3 mg/kg) injection. Pro-inflammatory cytokines mRNA including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, IL-6, and inflammatory enzyme cyclooxygenase-2 (COX-2) mRNA were measured in the cerebral cortex, hippocampus, and hypothalamus tissue using real-time polymerase chain reaction at 24 h after the LPS injection. Histological changes of Cornu ammonis area 1 (CA1) neurons, Bax, Bcl-2, and caspase-3 expression in the hippocampus was also evaluated by immunohistochemistry and Western blotting method. Results : 18betaGA significantly attenuated the up-regulation of TNF-${\alpha}$, IL-$1{\beta}$, IL-6 mRNA, and COX-2 mRNA expression in the brain tissues induced by the LPS injection. 18betaGA also significantly attenuated the reductions of the thickness of CA1 and the number of CA1 neurons. The up-regulation of Bax protein expression in the hippocampal tissue by the LPS injection was significantly attenuated, while the ratio of Bcl-2/Bax expression was increased by 18betaGA treatment. 18betaGA also significantly attenuated the up-regulation of Bax and caspase-3 expression in the CA1 of the hippocampus. Conclusion : This results indicate that 18betaGA has anti-inflammatory and anti-apoptosis effect under neuroinflammation induced by the LPS injection and suggest that 18betaGA may be a beneficial drug for various brain diseases accompanied with the brain tissue inflammation.

Selective blockade of spinal D2DR by levo-corydalmine attenuates morphine tolerance via suppressing PI3K/Akt-MAPK signaling in a MOR-dependent manner

  • Dai, Wen-Ling;Liu, Xin-Tong;Bao, Yi-Ni;Yan, Bing;Jiang, Nan;Yu, Bo-Yang;Liu, Ji-Hua
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.6.1-6.12
    • /
    • 2018
  • Morphine tolerance remains a challenge in the management of chronic pain in the clinic. As shown in our previous study, the dopamine D2 receptor (D2DR) expressed in spinal cord neurons might be involved in morphine tolerance, but the underlying mechanisms remain to be elucidated. In the present study, selective spinal D2DR blockade attenuated morphine tolerance in mice by inhibiting phosphatidylinositol 3 kinase (PI3K)/serine-threonine kinase (Akt)-mitogen activated protein kinase (MAPK) signaling in a ${\mu}$ opioid receptor (MOR)-dependent manner. Levo-corydalmine (l-CDL), which exhibited micromolar affinity for D2DR in D2/CHO-K1 cell lines in this report and effectively alleviated bone cancer pain in our previous study, attenuated morphine tolerance in rats with chronic bone cancer pain at nonanalgesic doses. Furthermore, the intrathecal administration of l-CDL obviously attenuated morphine tolerance, and the effect was reversed by a D2DR agonist in mice. Spinal D2DR inhibition and l-CDL also inhibited tolerance induced by the MOR agonist DAMGO. l-CDL and a D2DR small interfering RNA (siRNA) decreased the increase in levels of phosphorylated Akt and MAPK in the spinal cord; these changes were abolished by a PI3K inhibitor. In addition, the activated Akt and MAPK proteins in mice exhibiting morphine tolerance were inhibited by a MOR antagonist. Intrathecal administration of a PI3K inhibitor also attenuated DAMGO-induced tolerance. Based on these results, l-CDL antagonized spinal D2DR to attenuate morphine tolerance by inhibiting PI3K/Akt-dependent MAPK phosphorylation through MOR. These findings provide insights into a more versatile treatment for morphine tolerance.