• Title/Summary/Keyword: attention and information

Search Result 4,573, Processing Time 0.039 seconds

Attention Capsule Network for Aspect-Level Sentiment Classification

  • Deng, Yu;Lei, Hang;Li, Xiaoyu;Lin, Yiou;Cheng, Wangchi;Yang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1275-1292
    • /
    • 2021
  • As a fine-grained classification problem, aspect-level sentiment classification predicts the sentiment polarity for different aspects in context. To address this issue, researchers have widely used attention mechanisms to abstract the relationship between context and aspects. Still, it is difficult to effectively obtain a more profound semantic representation, and the strong correlation between local context features and the aspect-based sentiment is rarely considered. In this paper, a hybrid attention capsule network for aspect-level sentiment classification (ABASCap) was proposed. In this model, the multi-head self-attention was improved, and a context mask mechanism based on adjustable context window was proposed, so as to effectively obtain the internal association between aspects and context. Moreover, the dynamic routing algorithm and activation function in capsule network were optimized to meet the task requirements. Finally, sufficient experiments were conducted on three benchmark datasets in different domains. Compared with other baseline models, ABASCap achieved better classification results, and outperformed the state-of-the-art methods in this task after incorporating pre-training BERT.

A Study on Visual Behavior for Presenting Consumer-Oriented Information on an Online Fashion Store

  • Kim, Dahyun;Lee, Seunghee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.5
    • /
    • pp.789-809
    • /
    • 2020
  • Growth in online channels has created fierce competition; consequently, retailers have to invest an increasing amount of effort into attracting consumers. In this study, eye-tracking technology examined consumers' visual behavior to gain an understanding of information searching behavior in exploring product information for fashion products. Product attribute information was classified into two image-based elements (model image information and detail image information) and two text-based elements (basic text information, detail text information), after which consumers' visual behavior for each information element was analyzed. Furthermore, whether involvement affects consumers' information search behavior was investigated. The results demonstrated that model image information attracted visual attention the quickest, while detail text information and model image information received the most visual attention. Additionally, high-involvement consumers tended to pay more attention to detailed information while low-involvement consumers tended to pay more attention to image-based and basic information. This study is expected to help broaden the understanding of consumer behavior and provide implications for establishing strategies on how to efficiently organize product information for online fashion stores.

Boundary-Aware Dual Attention Guided Liver Segment Segmentation Model

  • Jia, Xibin;Qian, Chen;Yang, Zhenghan;Xu, Hui;Han, Xianjun;Ren, Hao;Wu, Xinru;Ma, Boyang;Yang, Dawei;Min, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.16-37
    • /
    • 2022
  • Accurate liver segment segmentation based on radiological images is indispensable for the preoperative analysis of liver tumor resection surgery. However, most of the existing segmentation methods are not feasible to be used directly for this task due to the challenge of exact edge prediction with some tiny and slender vessels as its clinical segmentation criterion. To address this problem, we propose a novel deep learning based segmentation model, called Boundary-Aware Dual Attention Liver Segment Segmentation Model (BADA). This model can improve the segmentation accuracy of liver segments with enhancing the edges including the vessels serving as segment boundaries. In our model, the dual gated attention is proposed, which composes of a spatial attention module and a semantic attention module. The spatial attention module enhances the weights of key edge regions by concerning about the salient intensity changes, while the semantic attention amplifies the contribution of filters that can extract more discriminative feature information by weighting the significant convolution channels. Simultaneously, we build a dataset of liver segments including 59 clinic cases with dynamically contrast enhanced MRI(Magnetic Resonance Imaging) of portal vein stage, which annotated by several professional radiologists. Comparing with several state-of-the-art methods and baseline segmentation methods, we achieve the best results on this clinic liver segment segmentation dataset, where Mean Dice, Mean Sensitivity and Mean Positive Predicted Value reach 89.01%, 87.71% and 90.67%, respectively.

EEG & Pitch data based learning concentration determination system (EEG & Pitch 데이터 기반의 학습 집중 판단 시스템)

  • Kim, Jeong-Sang;Kim, Jin-Woo;Kim, Jae-Hyeong;Seo, Jeong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.687-689
    • /
    • 2018
  • The current EEG device can determine the concentration, but can not determine the concentration of the state. Therefore, we distinguish attitude based on Mindwave Attention data and additionally Pitch data to distinguish whether or not we are looking at a video object, and suggest a method to obtain better performance. Attention data were measured in the state where the images were viewed and concentrated. In the case of the Pitch data, Sit was measured when sitting on a desk and Lie when lying down. Attention value was 38 or more. When the value of the Pitch is smaller than -48, it is judged that it is in a prone state. When the concentration and sitting state were satisfied with this threshold value, it was judged that they focused on watching the actual video.

  • PDF

Rhythmic Initiation in the respect of Information Processing approach (정보처리접근에서의 율동적 개시)

  • Choi, Jae-Won;Chung, Hyun-Ae
    • PNF and Movement
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 2011
  • Purpose : This study was to investigate the application of Rhythmic Initiation(RI) in the respect of information processing in motor learning. Methods : A computer-aided literature search was performed in PubMed and adapted to the other databases and the others were in published books. The following keywords were used: Rhythmic Initiation, attention, memory, motor accuracy, feedback, motor learning, motor control, PNF, cognition. Results : The characterization of RI is rhythmic motion of limb or body through the desired range, starting with passive motion and progressing to active resisted movement. This study suggested that the relationship between of RI and motor learning through the respect of information processing, memory, attention and motor accuracy. Conclusion : Only Rhythmic Initiation, specifically focused on the effects of information processing approach, suggesting that RI can be positively influeced on sensory-perception, attention, memory, motor accuracy. however, it is unclear whether positive effects in the laboratory and field can be generalized to improve. In addition, sustainability of motor learning with RI remains uncertain.

Tobacco Retail License Recognition Based on Dual Attention Mechanism

  • Shan, Yuxiang;Ren, Qin;Wang, Cheng;Wang, Xiuhui
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.480-488
    • /
    • 2022
  • Images of tobacco retail licenses have complex unstructured characteristics, which is an urgent technical problem in the robot process automation of tobacco marketing. In this paper, a novel recognition approach using a double attention mechanism is presented to realize the automatic recognition and information extraction from such images. First, we utilized a DenseNet network to extract the license information from the input tobacco retail license data. Second, bi-directional long short-term memory was used for coding and decoding using a continuous decoder integrating dual attention to realize the recognition and information extraction of tobacco retail license images without segmentation. Finally, several performance experiments were conducted using a largescale dataset of tobacco retail licenses. The experimental results show that the proposed approach achieves a correction accuracy of 98.36% on the ZY-LQ dataset, outperforming most existing methods.

ADD-Net: Attention Based 3D Dense Network for Action Recognition

  • Man, Qiaoyue;Cho, Young Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.21-28
    • /
    • 2019
  • Recent years with the development of artificial intelligence and the success of the deep model, they have been deployed in all fields of computer vision. Action recognition, as an important branch of human perception and computer vision system research, has attracted more and more attention. Action recognition is a challenging task due to the special complexity of human movement, the same movement may exist between multiple individuals. The human action exists as a continuous image frame in the video, so action recognition requires more computational power than processing static images. And the simple use of the CNN network cannot achieve the desired results. Recently, the attention model has achieved good results in computer vision and natural language processing. In particular, for video action classification, after adding the attention model, it is more effective to focus on motion features and improve performance. It intuitively explains which part the model attends to when making a particular decision, which is very helpful in real applications. In this paper, we proposed a 3D dense convolutional network based on attention mechanism(ADD-Net), recognition of human motion behavior in the video.

Shared Spatio-temporal Attention Convolution Optimization Network for Traffic Prediction

  • Pengcheng, Li;Changjiu, Ke;Hongyu, Tu;Houbing, Zhang;Xu, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2023
  • The traffic flow in an urban area is affected by the date, weather, and regional traffic flow. The existing methods are weak to model the dynamic road network features, which results in inadequate long-term prediction performance. To solve the problems regarding insufficient capacity for dynamic modeling of road network structures and insufficient mining of dynamic spatio-temporal features. In this study, we propose a novel traffic flow prediction framework called shared spatio-temporal attention convolution optimization network (SSTACON). The shared spatio-temporal attention convolution layer shares a spatio-temporal attention structure, that is designed to extract dynamic spatio-temporal features from historical traffic conditions. Subsequently, the graph optimization module is used to model the dynamic road network structure. The experimental evaluation conducted on two datasets shows that the proposed method outperforms state-of-the-art methods at all time intervals.

Effects of Cognitive Attention on Human Multitasking Behaviors (인지적 주의가 다중 작업 행위에 미치는 영향)

  • Minsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.501-506
    • /
    • 2024
  • Humans have been shown to engage in multitasking behavior when searching for information on two or more topics or searching an information system at the same time. When processing multiple information tasks, priorities must be established as there are cognitive and physical limitations in processing multiple information tasks at once. The level of cognitive attention involved in multitasking behavior can vary depending on the complexity and importance of the information task. The objectives of this study are to understand: (a) the relationship between attention and information task prioritization behavior when people interact with information retrieval systems to find information for multiple tasks; (b) The effect of the degree of attention on information task prioritization behavior when people interact with an IR system to find information for multiple tasks. A review of the relevant literature shows that when people interact with information retrieval systems to find information for multiple tasks, their level of attention affects how they prioritize multiple information tasks. It should be noticed that people pay more attention to things they find interesting or important. Human-centered system design based on a conceptual understanding of multitasking is discussed.

Image Captioning with Synergy-Gated Attention and Recurrent Fusion LSTM

  • Yang, You;Chen, Lizhi;Pan, Longyue;Hu, Juntao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3390-3405
    • /
    • 2022
  • Long Short-Term Memory (LSTM) combined with attention mechanism is extensively used to generate semantic sentences of images in image captioning models. However, features of salient regions and spatial information are not utilized sufficiently in most related works. Meanwhile, the LSTM also suffers from the problem of underutilized information in a single time step. In the paper, two innovative approaches are proposed to solve these problems. First, the Synergy-Gated Attention (SGA) method is proposed, which can process the spatial features and the salient region features of given images simultaneously. SGA establishes a gated mechanism through the global features to guide the interaction of information between these two features. Then, the Recurrent Fusion LSTM (RF-LSTM) mechanism is proposed, which can predict the next hidden vectors in one time step and improve linguistic coherence by fusing future information. Experimental results on the benchmark dataset of MSCOCO show that compared with the state-of-the-art methods, the proposed method can improve the performance of image captioning model, and achieve competitive performance on multiple evaluation indicators.