• Title/Summary/Keyword: atomic distribution

Search Result 827, Processing Time 0.03 seconds

A Study on the Electrochemical Properties of LiNi0.8Co0.2-xMxO2[M=Al] Cathode Materials Prepared by Sol-Gel Method (졸-겔법에 의해 제조된 정극 활물질 LiNi0.8Co0.2-xMxO2[M=Al]의 전기화학적 특성)

  • Han, Chang-Joo;Cho, Won-Il;Cho, Byung-Won;Yun, Kyung-Suk;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.266-270
    • /
    • 2003
  • The $LiN_{0.8}Co_{0.2}O_2$ has shown outstanding electrochemical properties. The microstructure of $LiN_{0.8}Co_{0.2}O_2$ cathode was investigated by using TEM (transmission electron microscopy) and X-ray diffraction techniques. The $LiN_{0.8}Co_{0.2}O_2$ was produced by sol-gel method to synthesize fine particles less than $1{\mu}m$ in the average diameter. In this study, emphasis was given to the examination and interpretation of the microstructural change during charge-discharge cycling experiments, which appeared to be one of the main causes of early degradation of rechargeable batteries. Results showed that the $1{\mu}m$ cathode produced by sol-gel method had high reversible capacity and excellent cycling stability due to its homogeneous distribution of Ni and Co cations on u atomic scale. In particular, the $1{\mu}m$ cathode did not show severe strain induced structural defects or cubic spinel disordering during cycling experiments, which had been observed in the conventional $LiCoO_2$ cathode. The $LiNi_{0.8}Co_{0.2-x}M_x[M=Al]$ compounds show good reversibility but low discharge capacity.

Effect of Type I Collagen on Hydroxyapatite and Tricalcium Phosphate Mixtures in Rat Calvarial Bony Defects

  • Kim, Jung-Hwan;Kim, Soung-Min;Kim, Ji-Hyuck;Kwon, Kwang-Jun;Park, Young-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.36-48
    • /
    • 2008
  • To repair bone defects in the oral and maxillofacial field, bone grafts including autografts, allografts, and artificial bone are used in clinical dentistry despite several disadvantages. The purpose of this study was to evaluate new bone formation and healing in rat calvarial bone defects using hydroxyapatite (HA, $Ca_{10}[PO_4]_6[OH]_2,\;Bongros^{(R)}$, Bio@ Co., KOREA) and tricalcium phosphate (${\beta}-TCP,\;Ca_3[PO_4]_2$, Sigma-Aldrich Co., USA) mixed at various ratios. Additionally, this study evaluated the effects of type I collagen (Rat tail, BD Biosciences Co., Sweden) as a basement membrane organic matrix. A total of twenty, 8-week-old, male Sprague-Dawley rats, weighing 250-300g, were divided equally into a control group (n=2) and nine experimental groups (n=2, each). Bilateral, standardized transosseous circular calvarial defects, 5.0 mm in diameter, were created. In each experimental group, the defect was filled with HA and TCP at a ratio of 100:0, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, and 0:100 with or without type I collagen. Rats were sacrificed 4 and 8 weeks post-operation for radiographic (standardized plain film, Kodak Co., USA), histomorphologic (H&E [Hematoxylin and Eosin], MT [Masson Trichrome]), immunohistochemical staining (for BMP-2, -4, VEGF, and vWF), and elementary analysis (Atomic absorption spectrophotometer, Perkin Elmer AAnalyst $100^{(R)}$). As the HA proportion increased, denser radiopacity was seen in most groups at 4 and 8 weeks. In general radiopacity in type I collagen groups was greater than the non-collagen groups, especially in the 100% HA group at 8 weeks. No new bone formation was seen in calvarial defects in any group at 4 weeks. Bridging bone formation from the defect margin was marked at 8 weeks in most type I collagen groups. Although immunohistochemical findings with BMP-2, -4, and VEGF were not significantly different, marked vWF immunoreactivity was present. vWF staining was especially strong in endothelial cells in newly formed bone margins in the 100:0, 80:20, and 70:30 ratio type I collagen groups at 8 weeks. The calcium compositions from the elementary analysis were not statistically significant. Many types of artificial bone have been used as bone graft materials, but most of them can only be applied as an inorganic material. This study confirmed improved bony regeneration by adding organic type I collagen to inorganic HA and TCP mixtures. Therefore, these new artificial bone graft materials, which are under strict storage and distribution systems, will be suggested to be available to clinical dentistry demands.

Ferroelectric domain inversion in $LiNbO_3$ crystal plate during heat treatment for Ti in-diffusion ($Ti:LiNbO_3$ 도파로 제작을 위한 열처리 과정 동안 강유전 도메인 특성에 미치는 영향)

  • Yang, W.S.;Lee, H.Y.;Kwon, S.W.;Kim, W.K.;Lee, H.Y.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.124-127
    • /
    • 2005
  • It is demonstrated that the annealing process for Ti in-diffusion to z-cut $LiNbO_3$ at temperature lower than the curie temperature in a platinum (Pt) box can cause a ferroelectric micro-domain inversion at the +z surface and Li out-diffusion, therefore which should be avoided or suppressed for waveguide type periodically poled lithium niobate (PPLN) devices. The depth of the inversion layer depends on the Ti-diffusion conditions such as temperature, atmosphere, the sealing method of $LiNbO_3$ in the Pt box and crystal orientation is experimentally examined. The result shows that the polarization-inverted domain boundary appears at the only +z surface and its thickness is about $1.6{\mu}m$. Also, for the etched $LiNbO_3$, surface the domain shape was observed by the optical microscope and atomic force microscopy (AEM), and distribution of the cation concentrations in the $LiNbO_3$ crystal by the secondary ion mass spectrometry (SIMS).

Reliable and High Spatial Resolution Method to Identify the Number of MoS2 Layers Using a Scanning Electron Microscopy

  • Sharbidre, Rakesh Sadanand;Park, Se Min;Lee, Chang Jun;Park, Byong Chon;Hong, Seong-Gu;Bramhe, Sachin;Yun, Gyeong Yeol;Ryu, Jae-Kyung;Kim, Taik Nam
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.705-709
    • /
    • 2017
  • The electronic and optical characteristics of molybdenum disulphide ($MoS_2$) film significantly vary with its thickness, and thus a rapid and accurate estimation of the number of $MoS_2$ layers is critical in practical applications as well as in basic researches. Various existing methods are currently available for the thickness measurement, but each has drawbacks. Transmission electron microscopy allows actual counting of the $MoS_2$ layers, but is very complicated and requires destructive processing of the sample to the point where it will no longer be useable after characterization. Atomic force microscopy, particularly when operated in the tapping mode, is likewise time-consuming and suffers from certain anomalies caused by an improperly chosen set point, that is, free amplitude in air for the cantilever. Raman spectroscopy is a quick characterization method for identifying one to a few layers, but the laser irradiation causes structural degradation of the $MoS_2$. Optical microscopy works only when $MoS_2$ is on a silicon substrate covered with $SiO_2$ of 100~300 nm thickness. The last two optical methods are commonly limited in resolution to the micrometer range due to the diffraction limits of light. We report here a method of measuring the distribution of the number of $MoS_2$ layers using a low voltage field emission electron microscope with acceleration voltages no greater than 1 kV. We found a linear relationship between the FESEM contrast and the number of $MoS_2$ layers. This method can be used to characterize $MoS_2$ samples at nanometer-level spatial resolution, which is below the limits of other methods.

Comparison of Airborne Lead Concentration in and Around Lead Production Plant (재생 납 생산 공장과 인근 지역의 공기 중 납 농도 수준 비교)

  • Park, Changhwan;Park, Yunkyung;Oh, Younhee;Choi, Inja;Cha, Wonseok;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.1
    • /
    • pp.34-41
    • /
    • 2019
  • Objective: This study is conducted to evaluate airborne lead concentration in and around lead production plant. Methods: Airborne lead concentration was monitored simultaneously inside of the processes of lead recycling factory and outside of factory which include stack, boundary of factory and residential area 1 km and 7.5 km from factory, respectively. All samples were measured three times at 1.5 m from the ground and analyzed using inductively coupled plasma mass spectrometer, inductively coupled plasma optical emission spectrometer or flame atomic absorption spectrometer. Results: All airborne lead concentrations measured inside of factory($13.9{\mu}g/m^3-252.9{\mu}g/m^3$) and outside of factory($0.001{\mu}g/m^3-54.97{\mu}g/m^3$) showed log-normal distribution. Geometric mean lead concentration, $54.81{\mu}g/m^3$, measured inside of factory was significantly higher than outside of factory, $0.20{\mu}g/m^3$(p<0.01). Among the samples measured inside the factory, lead concentration was the highest in the refining process($59.02{\mu}g/m^3-252.9{\mu}g/m^3$). In the case of the samples outside the factory, the nearest chimney was the highest($3.84{\mu}g/m^3-54.97{\mu}g/m^3$), and the lead concentration at the farthest place, 7.5 km from the factory was the lowest($0.001{\mu}g/m^3-1.7{\mu}g/m^3$). The arithmetic lead concentration, $0.45{\mu}g/m^3$ in the residential area near the factory was below the atmospheric environment standard of $0.5{\mu}g/m^3$, but the maximum concentration of $3.4{\mu}g/m^3$ was exceeded. Conclusions: Airborne lead concentration in residential area, 1 km away from lead recycling plant, may exceed ambient air standard of $0.5{\mu}g/m^3$.

Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 이용한 암석 균열의 수리역학 거동해석: 국제공동연구 DECOVALEX-2023 Task G (Benchmark Simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.270-288
    • /
    • 2021
  • We proposed a numerical method to simulate the hydro-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) in the paper. As a part of DECOVALEX-2023 Task G, we verified the method via benchmarks with analytical solutions. DECOVALEX-2023 Task G aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as a group of tetrahedral grains and calculated the interaction of the grains and their interfaces using 3DEC. The micro-parameters of the grains and interfaces were determined by a new methodology based on an equivalent continuum approach. In benchmark modeling, a single fracture embedded in the rock was examined for the effects of fracture inclination and roughness, the boundary stress condition and the applied pressure. The simulation results showed that the developed numerical model reasonably reproduced the fracture slip induced by boundary stress condition, the fracture opening induced by fluid injection, the stress distribution variation with fracture inclination, and the fracture roughness effect. In addition, the fracture displacements associated with the opening and slip showed good agreement with the analytical solutions. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Determination of Heavy Metal Concentration in Herbal Medicines by GF-AAS and Automated Mercury Analyzer

  • Kim, Sang-A;Kim, Young-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.4
    • /
    • pp.281-288
    • /
    • 2021
  • This study was conducted to analyze and compare the concentrations of heavy metals in 430 different products of 20 types of herbal medicines available in the domestic market in Korea by Graphite Furnace-Atomic Absorption Spectrometry (GF-AAS) and automated mercury analyzer. The accuracy for lead (Pb), arsenic (As), cadmium (Cd), and mercury (Hg) was in the range 92.67-102.56%, and the precision was 0.21-6.00 relative standard deviation (RSD%), which was in compliance with the Codex acceptable range. Furthermore, the Food Analysis Performance Assessment Scheme (FAPAS) quality control (QC) material showed a recovery range of 96.7-102.0% and 0.33-4.93 RSD%. The average contents (㎍/kg) of Pb, As, Cd, and Hg in herbal medicines were 254.9 (not detected (N.D.)-2,515.2), 171.0 (N.D.-2,465.2), 99.2 (N.D.-797.1), and 6.0 (N.D.-83.6), respectively. Based on the quantitative analysis results, the heavy metal contents of 20 types of herbal medicines distributed in Korea are within the acceptable range according to the standards issued by the Ministry of Food and Drug Safety (MFDS). By using the manufacturer of herbal products as the standard for QC, the Pb, As, Cd, and Hg contents were investigated in the packaging process just before distribution to determine the actual conditions of residual heavy metals in herbal medicines. Thus, these result may contribute to monitoring the QC of herbal medicines distributed in Korea and could provide basic data for supplying safe herbal medicines to the public.

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

Evaluation of Butyltin Compounds and its Distribution Among Seawater, Sediment and Biota from the Kwangyang Bay (광양만내 유기주석화합물의 해수, 퇴적물, 생물중 농도 및 분포 상관관계)

  • KIM Gue Yoong;PARK Mi-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.291-298
    • /
    • 2001
  • Seawater, sediment and biota in the Kwangyang Bay were analyzed by gas chromatography/quartz furnace atomic absorption spectroscopy (GC-QFAAS) to investigate concentrations and distribution pattern of butyltin compounds (TBT, DBT, MBT) during February, April and July, 1996, Marine biota analyzed were Tapes japcnicus and Crassostrea gigas. The concentrations of tributyltin (TBT) in seawater were in the range of ND-15.7 ng/L for the surface and ND-68.5 ng/L for the bottom. The highest concentration of TBT in seawater was detected in April for the both, surface and bottom water. The maximum value of $TBT_{(bottom)}/TBT_{(surface)}$, 3.6 in April showed the increased input of TBT from the surface water in April compared to February (2.1) and July (0.9). The concentrations of TBT in the sediment were in the range of ND-8.5 ng/g dry wt. The highest concentration of TBT in the sediment was measured in July, This result seems to attributed to the removal of TBT from water column via sorption onto particulate matters to the relatively undisturbed underlying sediment and increased input of TBT by increased fluxes of detritus of marine plankton after spring bloom, in July. The mean values of partitioning coefficient ($K_d$) of TBT between seawater and sediment were $3.0\times10^3$(February), $7.4\times10^3$(April) and $9.4\times10^3$(July). The concentrations of TBT in biosamples were in the range of ND-93.30 ng/g dru wt. (T. japonicus) and ND-138.53 ng/g dry wt. (C. gigas). The seasonal variation of TBT contents in biota was remarkable. The $K_d$ (biological concentration factor) was $7-41\times10^3$ for T. japonicus. and $5-34\times10^3$ for C. gigas. The measured TBT concentrations in seawater in the study area was sufficient to cause the imposex of shellfish and to retard the growth of aquatic organisms including oyster upon chronic exposure.

  • PDF

Radiation Absorbed Dose Calculation Using Planar Images after Ho-166-CHICO Therapy (Ho-166-CHICO 치료 후 평면 영상을 이용한 방사선 흡수선량의 계산)

  • 조철우;박찬희;원재환;왕희정;김영미;박경배;이병기
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 1998
  • Ho-l66 was produced by neutron reaction in a reactor at the Korea Atomic Energy Institute (Taejon, Korea). Ho-l66 emits a high energy beta particles with a maximum energy of 1.85 MeV and small proportion of gamma rays (80 keV). Therefore, the radiation absorbed dose estimation could be based on the in-vivo quantification of the activity in tumors from the gamma camera images. Approximately 1 mCi of Ho-l66 in solution was mixed into the flood phantom and planar scintigraphic images were acquired with and without patient interposed between the phantom and scintillation camera. Transmission factor over an area of interest was calculated from the ratio of counts in selected regions of the two images described above. A dual-head gamma camera(Multispect2, Siemens, Hoffman Estates, IL, USA) equipped with medium energy collimators was utilized for imaging(80 keV${\pm}$10%). Fifty-nine year old female patient with hepatoma was enrolled into the therapeutic protocol after the informed consent obtained. Thirty millicuries(110MBq) of Ho-166-CHICO was injected into the right hepatic arterial branch supplying hepatoma. When the injection was completed, anterior and posterior scintigraphic views of the chest and pelvic regions were obtained for 3 successive days. Regions of interest (ROIs) were drawn over the organs in both the anterior and posterior views. The activity in those ROIs was estimated from geometric mean, calibration factor and transmission factors. Absorbed dose was calculated using the Marinelli formula and Medical Internal Radiation Dose (MIRD) schema. Tumor dose of the patient treated with 1110 MBq(30 mCi) Ho-l66 was calculated to be 179.7 Gy. Dose distribution to normal liver, spleen, lung and bone was 9.1, 10.3, 3.9, 5.0 % of the tumor dose respectively. In conclusion, tumor dose and absorbed dose to surrounding structures were calculated by daily external imaging after the Ho-l66 therapy for hepatoma. In order to limit the thresholding dose to each surrounding organ, absorbed dose calculation provides useful information.

  • PDF