Browse > Article

Ferroelectric domain inversion in $LiNbO_3$ crystal plate during heat treatment for Ti in-diffusion  

Yang, W.S. (Nano Bio-photonics Team, Korea Electronics Technology Institute, Department of Materials Engineering, Hankuk Aviation University)
Lee, H.Y. (Nano Bio-photonics Team, Korea Electronics Technology Institute)
Kwon, S.W. (Department of Materials Engineering, Hankuk Aviation University)
Kim, W.K. (Nano Bio-photonics Team, Korea Electronics Technology Institute)
Lee, H.Y. (Nano Bio-photonics Team, Korea Electronics Technology Institute)
Yoon, D.H. (Department of Advanced Materials Engineering, Sungkyunkwan University)
Abstract
It is demonstrated that the annealing process for Ti in-diffusion to z-cut $LiNbO_3$ at temperature lower than the curie temperature in a platinum (Pt) box can cause a ferroelectric micro-domain inversion at the +z surface and Li out-diffusion, therefore which should be avoided or suppressed for waveguide type periodically poled lithium niobate (PPLN) devices. The depth of the inversion layer depends on the Ti-diffusion conditions such as temperature, atmosphere, the sealing method of $LiNbO_3$ in the Pt box and crystal orientation is experimentally examined. The result shows that the polarization-inverted domain boundary appears at the only +z surface and its thickness is about $1.6{\mu}m$. Also, for the etched $LiNbO_3$, surface the domain shape was observed by the optical microscope and atomic force microscopy (AEM), and distribution of the cation concentrations in the $LiNbO_3$ crystal by the secondary ion mass spectrometry (SIMS).
Keywords
$LiNbO_3$; Periodically poled lithium niobate (PPLN); Polarization-inversion; SIMS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Nassau, H.J. Levinstein and G.M. Loiacono, 'Ferroelectric lithium niobate', J. Phys. Chem. Solids 27 (1966) 983   DOI   ScienceOn
2 D. Callejo, S. Manotas, M.D. Serrano, V. Bermudez, F. Agullo-rueda and E. Dieguez, 'Compositional study of $LiNbO_3$ thin films frown by liquid phase epitaxy', J. Crystal Growth 226 (2001) 488
3 K. Kawase, J. Shikata, T. Taniuchi and H. Ito, 'Widely tunable THz-wave generation using $LiNbO_3$ optical parametric oscillator and its application to differential imaging', Proc. SPIE 3465 (1998) 20
4 E. Myers and R. Bosenberg, 'Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators', IEEE J. Quantum Electronics 33 (1997) 1663
5 D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkotter, R. Ricken and W. Sohler, 'Quisa-phase-matched difference-frequency generation in periodically poled Ti : $LiNbO_3$ channel waveguides', Optics Letters 24 (1999) 896   DOI   ScienceOn
6 C. Alferness and V.R. Ramaswamy, 'Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for ${\lambda}$ = 1.32 um', IEEE J. Quantum Electronics QE-18 (1982) 1807
7 R.J. Esdaile, 'Closed-tube control of out-diffusion during fabrication of optical waveguides in $LiNbO_3$', Appl. Phys. Lett. 33 (1978) 733
8 S. Miyazawa, 'Optical crystals survived information technology systems', Opto-electronics review 11 (2003) 77
9 I. Baumann, 'Analysis of optically detected compositional inhomogeneities in Czochralski-grown $LiNbO_3$', J. Crystal Growth 144 (1994) 193