• Title/Summary/Keyword: atmospheric turbulence

Search Result 233, Processing Time 0.025 seconds

Performance Evaluation and Improvement of Operational Aviation Turbulence Prediction Model for Middle- and Upper- Levels (중·상층 항공난류 예측모델의 성능 평가와 개선)

  • Yujeong Kang;Hee-Wook Choi;Yuna Choi;Sang-Sam Lee;Hye-Won Hwang;Hyuk-Je Lee;Yong Hee Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.30-41
    • /
    • 2023
  • Aviation turbulence, caused by atmospheric eddies, is a disruptive phenomenon that leads to abrupt aircraft movements during flight. To minimize the damages caused by such aviation turbulence, the Aviation Meteorological Office provides turbulence information through the Korea aviation Turbulence Guidance (KTG) and the Global-Korean aviation Turbulence Guidance (GKTG). In this study, we evaluated the performance of the KTG and GKTG models by comparing the in-situ EDR observation data and the generated aviation turbulence prediction data collected from the mid-level Korean Peninsula region from January 2019 to December 2021. Through objective validation, we confirmed the level of prediction performance and proposed improvement measures based on it. As a result of the improvements, the KTG model showed minimal difference in performance before and after the changes, while the GKTG model exhibited an increase of TSS after the improvements.

Effects of atmospheric turbulence on the laser cross-beam velocimeter (레이저 크로스빔 속도계에 대한 대기교란 효과)

  • sung pyung-shik
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.259-264
    • /
    • 2005
  • This paper have derived an expression(the fringe modle is used) for the photocurrelation-correlation function for a cross-beam laser velocimeter, taking into account the effects of atmospheric turbulence on the amplitude and phase of the incident beams. the result, as long as the atmospheric disturbances do not greatly damp out sinusoidal variations of the photocurrent-correlation function in the time it takes a particle to travel the fringe-separation distance, the disturbances do not hinder the determination of the velocity of the partides from the correlation funtion.(the scattering particles are assumed to have a well-defined V).

  • PDF

An active grid for the simulation of atmospheric boundary layers in a wind tunnel

  • Talamelli, A.;Riparbelli, L.;Westin, J.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.131-144
    • /
    • 2004
  • A technique for the simulation of atmospheric boundary layers in wind tunnels is developed and tested experimentally. The device consists of a grid made of seven horizontal and vertical evenly distributed bars in which air injection holes are drilled in order to influence the flow in the wind tunnel. The air flow in each bar can be controlled independently. Firstly, the device is used together with a rough carpet, which covers the test section floor, in order to simulate the boundary-layer characteristics over an open rural area. Hot-wire measurements, performed at different positions in the test-section, show the capability of the grid in generating the required boundary layer. An acceptable agreement with statistical values of mean velocity and turbulence profiles has been achieved, together with a good span-wise homogeneity. The results are also compared with those of a passive simulation technique based on the use of spires.

Validation of Numerical Model for the Wind Flow over Real Terrain (실지형을 지나는 대기유동에 대한 수치모델의 검증)

  • Kim, Hyeon-Gu;Lee, Jeong-Muk;No, Yu-Jeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.219-228
    • /
    • 1998
  • In the present investigation, a numerical model developed for the prediction of the wind flow over complex terrain is validated by comparing with the field experiments. For the solution of the Reynolds - Averaged Clavier- stokes equations which are the governing equations of the microscale atmospheric flow, the model is constructed based on the finite-volume formulation and the SIMPLEC pressure-correction algorithm for the hydrodynamic computation. The boundary- fitted coordinate system is employed for the detailed depiction of topography. The boundary conditions and the modified turbulence constants suitable for an atmospheric boundary- layer are applied together with the k- s turbulence model. The full- scale experiments of Cooper's Ridge, Kettles Hill and Askervein Hill are chosen as the validation cases . Comparisons of the mean flow field between the field measurements and the predicted results show good agreement. In the simulation of the wind flow over Askervein Hill , the numerical model predicts the three dimensional flow separation in the downslope of the hill including the blockage effect due to neighboring hills . Such a flow behavior has not been simulated by the theoretical predictions. Therefore, the present model may offer the most accurate prediction of flow behavior in the leeside of the hill among the existing theoretical and numerical predictions.

  • PDF

Development of Lagrangian Particle Dispersion Model Based on a Non-equilibrium 2.5 Level Closure Turbulence Model (비평형 2.5 난류모델을 이용한 라그란지안 입자 확산모델 개발)

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.613-623
    • /
    • 1999
  • A Lagrangian particle dispersion mode l(LPDM) coupled with the prognostic flow model based on nonequilibrium level 2.5 turbulence closure has been dcveloped to simulate the dispersion from an elevated emission source. The proposed model did not require any empirical formula or data for the turbulent statistics such as velocity variances and Lagrangian time scales since the turbulence properties for LPDM were calculated from results of the flow model. The LPDM was validated by comparing the model results against the wind tunnel tracer experiment and ISCST3 model. The calculated wind profile and turbulent velocity variances were in good agreement with those measured in the wind tunnel. The ground level concentrations along the plume centerline as well as the dispersion codfficients also showed good agreement in comparison with the wind tunnel tracer experiment. There were some discrepancies on the horizontal spread of the plume in comparison with the ISCST3 but the maximum ground level concentrations were in a good confidence range. The results of comparisons suggested that the proposed LPDM with the flow model was an effective tool to simulate the dispersion in the flow situation where the turbulent characteristics were not available in advance.

  • PDF

Comparison of several computational turbulence models with full-scale measurements of flow around a building

  • Wright, N.G.;Easom, G.J.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.305-323
    • /
    • 1999
  • Accurate turbulence modeling is an essential prerequisite for the use of Computational Fluid Dynamics (CFD) in Wind Engineering. At present the most popular turbulence model for general engineering flow problems is the ${\kappa}-{\varepsilon}$ model. Models such as this are based on the isotropic eddy viscosity concept and have well documented shortcomings (Murakami et al. 1993) for flows encountered in Wind Engineering. This paper presents an objective assessment of several available alternative models. The CFD results for the flow around a full-scale (6 m) three-dimensional surface mounted cube in an atmospheric boundary layer are compared with recently obtained data. Cube orientations normal and skewed at $45^{\circ}$ to the incident wind have been analysed at Reynolds at Reynolds number of greater than $10^6$. In addition to turbulence modeling other aspects of the CFD procedure are analysed and their effects are discussed.

Micrometeorological Characteristics in the Atmospheric Boundary Layer in the Seoul Metropolitan Area during High-Event and Non-event Days

  • Park, Il-Soo;Park, Moon-Soo;Lee, Joonsuk;Jang, Yu Woon
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1223-1237
    • /
    • 2020
  • This study focused on comparing the meteorological conditions in the Atmospheric Boundary Layer (ABL) on high-event days and non-event days in the Seoul Metropolitan Area (SMA). We utilized observed PM10 and meteorological variables at the surface as well as at the upper heights. The results showed that high-event days were consistently associated with lower wind speed, whereas wind direction showed no particular difference between high-event and non-event days with frequent westerlies and northwesterlies for both cases. During high-event days, the temperature was much warmer than the monthly normal values with a sharp increasing trend, and Relative Humidity (RH) was higher than the monthly normal, especially on high-event days in February. During high-event days in spring, a double inversion layer was present at surface and upper heights. This indicates that stability in the multi-layer is an important indicator of higher PM10 concentrations. Net radiation in spring and winter is also closely associated with higher PM10 concentrations. Strong net radiation resulted in large sensible heat, which in turn facilitated a deeper mixing height with diluted PM10 concentrations; in contrast, PM10 concentrations were higher when sensible heat in spring and winter was very low. We also confirmed that convective and friction velocity was higher on non-event days than on high-event days, and this was especially obvious in spring and winter. This indicated that thermal turbulence was dominant in spring, whereas in winter, mechanical turbulence was dominant over the SMA.

Model-Based Tabu Search Algorithm for Free-Space Optical Communication with a Novel Parallel Wavefront Correction System

  • Li, Zhaokun;Zhao, Xiaohui;Cao, Jingtai;Liu, Wei
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.45-54
    • /
    • 2015
  • In this study, a novel parallel wavefront correction system architecture is proposed, and a model-based tabu search (MBTS) algorithm is introduced for this new system to compensate wavefront aberration caused by atmospheric turbulence in a free-space optical (FSO) communication system. The algorithm flowchart is presented, and a simple hypothetical design for the parallel correction system with multiple adaptive optical (AO) subsystems is given. The simulated performance of MBTS for an AO-FSO system is analyzed. The results indicate that the proposed algorithm offers better performance in wavefront aberration compensation, coupling efficiency, and convergence speed than a stochastic parallel gradient descent (SPGD) algorithm.

Development of a New E-$\varepsilon$ Turbulence Model for Analysing the Air Flow Field within an Urban Street Canyon (도시협곡내 유동장 해석을 위한 새로운 E-$\varepsilon$ 난류 모델의 개발)

  • 정상진;박옥현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 1999
  • A new E-$\varepsilon$ turbulence numerical model is proposed for analysing the turbulent air flow field within are urban street canyon. In this model the equations of eddy viscosity and energy dissipation ae reformed by considering the Kolmogorov time scale and streamline curvature effect. Application results of the new E-$\varepsilon$ model have been compared with those of standard E-$\varepsilon$ model and Yang and Shih's one, which are commonly used ones in engineering fields, and with field experiment results of DePaul and Sheih. The new model appears to be generally superior to other both models in the prediction of an air flow field within street canyon.

  • PDF