• 제목/요약/키워드: atmospheric dispersion

검색결과 363건 처리시간 0.023초

양돈장 발생 악취의 확산특성 연구 (A Study on Dispersion Characteristics of Odor from Swine Farms)

  • 김두환;하덕민;이인복;최동윤;송준익
    • 한국축산시설환경학회지
    • /
    • 제20권2호
    • /
    • pp.41-48
    • /
    • 2014
  • This study was conducted to investigate the dispersion prediction of odor from swine farms in Korea. Gaussian Plume model used in considering of farm size, wind velocity, atmospheric stability and threshold odor unit to prediction of odor dispersion based on the survey on current state of odor emission and control from 48 site of swine farms. Farm size, wind velocity and atmospheric stability were affected the distance of odor dispersion, showed longer distance in cases of large farm, low wind velocity and stable atmospheric condition. We will suggestion the adjusted distance of odor dispersion according to farm size was estimated to 180 m in small farm and 320 m in large farm when apply the 3 OU, 5 m/s wind velocity and stable atmospheric condition.

복잡한 지형의 임해지역에서 대기 분산계수의 평가 (Estimation of Atmospheric Dispersion Coefficients in A Coastal Area with Complex Topography)

  • 박옥현;천성남
    • 한국대기환경학회지
    • /
    • 제14권5호
    • /
    • pp.411-420
    • /
    • 1998
  • To estimate the dispersion coefficients in a coastal area with complex topography, several schemes using empirical equations expressed with and in lateral and vertical directions, respectively have been examined. Estimation results using these equations and meteorological data obtained from SODAR system were compared' with previously measured dispersion coefficients in other coastal areas. Validations of estimation results have been performed by comparing the measured concentrations with predicted ones empolying in Boryung coastal area. Important conclusions were drawn as follows; (1) Variations of lateral and vertical wind direction revealed different height dependency in upper and lower mixed boundary layer. (2) Because of turbulent constraint effect by large water body in a coastal region, the lateral and the vertical dispersion coefficients were smaller than those of P-G system. (3) As a result of examining the performance measure of these schemes through checking of coincidence between measured and predicted concentrations, vertical dispersion coefficients were smaller than those of P-G system, and the Cramer scheme was found to be more appropriate rather than others in the coastal area surrounding Boryung power plant.

  • PDF

방사능 누출 사례일의 국내.외 라그랑지안 입자확산 모델링 결과 비교 (Lagrangian Particle Dispersion Modeling Intercomparison : Internal Versus Foreign Modeling Results on the Nuclear Spill Event)

  • 김철희;송창근
    • 한국대기환경학회지
    • /
    • 제19권3호
    • /
    • pp.249-261
    • /
    • 2003
  • A three-dimensional mesoscale atmospheric dispersion modeling system consisting of the Lagrangian particle dispersion model (LPDM) and the meteorological mesoscale model (MM5) was employed to simulate the transport and dispersion of non-reactive pollutant during the nuclear spill event occurred from Sep. 31 to Oct. 3, 1999 in Tokaimura city, Japan. For the comparative analysis of numerical experiment, two more sets of foreign mesoscale modeling system; NCEP (National Centers for Environmental Prediction) and DWD (Deutscher Wetter Dienst) were also applied to address the applicability of air pollution dispersion predictions. We noticed that the simulated results of horizontal wind direction and wind velocity from three meteorological modeling showed remarkably different spatial variations, mainly due to the different horizontal resolutions. How-ever, the dispersion process by LPDM was well characterized by meteorological wind fields, and the time-dependent dilution factors ($\chi$/Q) were found to be qualitatively simulated in accordance with each mesocale meteorogical wind field, suggesting that LPDM has the potential for the use of the real time control at optimization of the urban air pollution provided detailed meteorological wind fields. This paper mainly pertains to the mesoscale modeling approaches, but the results imply that the resolution of meteorological model and the implementation of the relevant scale of air quality model lead to better prediction capabilities in local or urban scale air pollution modeling.

확산계수의 모델링방법이 대기확산인자에 미치는 영향 (Influence of Modelling Approaches of Diffusion Coefficients on Atmospheric Dispersion Factors)

  • 황원태;김은한;정해선;정효준;한문희
    • Journal of Radiation Protection and Research
    • /
    • 제38권2호
    • /
    • pp.60-67
    • /
    • 2013
  • 가우시안 플륨모델(Gaussian plume model)을 사용한 대기확산의 예측에서 확산계수는 결과에 중요한 영향을 미치는 변수이다. 확산계수의 평가방법은 다양하며, 본 연구에서는 미국 원자력규제위원회(U. S. NRC) 권고 규제지침, 캐나다 원자력안전위원회(CNSC) 권고 규제지침, 확률론적 사고결말해석코드 MACCS와 MACCS2에서 권고 또는 적용하는 방법을 고찰하였다. U. S. NRC에서 권고하는 부지적합성 평가를 위한 가상사고시 대기확산모델을 기반으로 확산계수의 평가방법이 대기확산인자에 미치는 영향을 분석하였다. 확산계수는 Pasquill-Gifford 곡선을 기반으로 각기 다른 연구자들에 의해 얻어진 곡선의 피팅식(curve fitting equations)을 적용 또는 권고하고 있음을 확인하였다. 수평확산계수는 모든 규제지침과 코드에서 플륨의 사행효과를 반영하여 보정하고 있으나 그 적용 방법에 있어서는 차이를 나타냈다. 수직확산계수는 U. S. NRC 권고 규제지침을 제외하고 표면거칠기를 반영하여 보정하고 있다. 특정 표면거칠기에 대해 확산계수의 적용방법에 따라 대기확산인자는 최대 약 4배의 차이를 나타냈다. 표면거칠기는 대기확산인자에 중요한 영향을 나타냈으며, 동일 적용방법에 대해 표면거칠기에 따라 대기확산인자는 약 2~3배의 차이를 나타냈다.

원전부지 주변 국지순환에 따른 방사성 물질의 대기확산 특성 연구 (A Study on Mesoscale Atmospheric Dispersion of Radioactive Particles Released from Nuclear Power Plants)

  • 이갑복;이명찬;송영일
    • Journal of Radiation Protection and Research
    • /
    • 제22권4호
    • /
    • pp.273-288
    • /
    • 1997
  • 우리나라 원전이 위치하고 있는 해안지역에서 빈번히 발생하는 해륙풍 등과 같은 국지순환에 따른 방사성 물질의 대기확산 특성을 알아보기 위해 월성원전 주변지역을 대상으로 삼차원 해륙풍 모델과 라그랑지안 입자확산모델을 이용하여 봄철 약한 북풍이 부는 맑은 날과 강한 북풍이 부는 맑은 날에 대해 방사성 물질 확산에 관한 삼차원 시뮬레이션을 수행하였다. 시뮬레이션 결과, 해륙풍과 같은 국지순환의 발달여부에 따라 방사성 입자의 대기확산이 서로 다르게 나타남을 알 수 있었다. 또한 해륙풍의 해풍과 육풍의 풍향교체에 따른 입자의 재순환 현상이 대기중 농도분포에 중요한 역할을 하는 것을 확인할 수 있었다.

  • PDF

CALPUFF와 HYSPLIT의 방사성물질 대기확산 특성 비교 (Comparison of CALPUFF and HYSPLIT Models for Atmospheric Dispersion Simulations of Radioactive Materials)

  • 안혜연;강윤희;송상근;김유근
    • 한국대기환경학회지
    • /
    • 제31권6호
    • /
    • pp.573-584
    • /
    • 2015
  • In this study, the atmospheric dispersion of radioactive material ($^{137}Cs$) was simulated with regard to its impact within a 50-km radius from the Kori Nuclear Power Plant (NKPP) based on two different types of models (the non-steady-state puff model CALPUFF and the lagrangian model HYSPLIT) during the spring of 2012 (May 2012). The dispersion distribution of $^{137}Cs$ calculated in the CALPUFF model was similar to that of the HYSPLIT model, but the magnitudes of differences in its spatio-temporal concentrations between the two models were different. The $^{137}Cs$ concentrations simulated by the CALPUFF were significantly lower than those of the HYSPLIT due to a limitation of puff models (e.g. puff size growth over time). The CALPUFF had the advantage of determining the dispersion of radioactive materials and their impacts on the surrounding regions, compared with the HYSPLIT that had high concentrations of $^{137}Cs$ in only small local areas with the movement of air masses along the local winds.

Solving partial differential equation for atmospheric dispersion of radioactive material using physics-informed neural network

  • Gibeom Kim;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2305-2314
    • /
    • 2023
  • The governing equations of atmospheric dispersion most often taking the form of a second-order partial differential equation (PDE). Currently, typical computational codes for predicting atmospheric dispersion use the Gaussian plume model that is an analytic solution. A Gaussian model is simple and enables rapid simulations, but it can be difficult to apply to situations with complex model parameters. Recently, a method of solving PDEs using artificial neural networks called physics-informed neural network (PINN) has been proposed. The PINN assumes the latent (hidden) solution of a PDE as an arbitrary neural network model and approximates the solution by optimizing the model. Unlike a Gaussian model, the PINN is intuitive in that it does not require special assumptions and uses the original equation without modifications. In this paper, we describe an approach to atmospheric dispersion modeling using the PINN and show its applicability through simple case studies. The results are compared with analytic and fundamental numerical methods to assess the accuracy and other features. The proposed PINN approximates the solution with reasonable accuracy. Considering that its procedure is divided into training and prediction steps, the PINN also offers the advantage of rapid simulations once the training is over.

중규모 국지순환에서 이산화황의 농도예측에 관한 연구 (A Study on the Prediction of SO2 Concentration in local Circulation of Mesoscale)

  • 이화운;김유근;장은숙
    • 한국환경과학회지
    • /
    • 제5권3호
    • /
    • pp.277-284
    • /
    • 1996
  • The Characteristics of atmospheric flow and dispersion of air pollutants in the mountainous coastal area were studied using two-dimensional model by the combination of land-sea breezes and transport. The pollutants emitted into the simulated wind field in considering with the mesoscale local circulations. The typical effects of land-sea breezes and tophography of coastal area on the dispersion are discussed in detail, and the model is proved as an useful tool to pridict real time pollutant transport by the results of application studies in Pusan, Korea where the urbanized coastal area with mountainous topography. It was found that sulfur dioxide ($SO_2$) are differently transported and concentrated as going inland by the influence of the sea breeze with topographic changes. Key words : land-sea breezes, sulfur dioxide, dispersion, coastal area.

  • PDF

A Simple Model for Dispersion in the Stable Boundary Layer

  • Kang Sung-Dae;Kimura Fujio;Lee Hwa-Woon;Kim Yoo-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제1권1호
    • /
    • pp.35-43
    • /
    • 1997
  • Handling the emergency problems such as Chemobyl accident require real time prediction of pollutants dispersion. One-point real time sounding at pollutant source and simple model including turbulent-radiation process are very important to predict dispersion at real time. The stability categories obtained by one-dimensional numerical model (including PBL dynamics and radiative process) are good agreement with observational data (Golder, 1972). Therefore, the meteorological parameters (thermal, moisture and momentum fluxes; sensible and latent heat; Monin-Obukhov length and bulk Richardson number; vertical diffusion coefficient and TKE; mixing height) calculated by this model will be useful to understand the structure of stable boundary layer and to handling the emergency problems such as dangerous gasses accident. Especially, this simple model has strong merit for practical dispersion models which require turbulence process but does not takes long time to real predictions. According to the results of this model, the urban area has stronger vertical dispersion and weaker horizontal dispersion than rural area during daytime in summer season. The maximum stability class of urban area and rural area are 'A' and 'B' at 14 LST, respectively. After 20 LST, both urban and rural area have weak vertical dispersion, but they have strong horizontal dispersion. Generally, the urban area have larger radius of horizontal dispersion than rural area. Considering the resolution and time consuming problems of three dimensional grid model, one-dimensional model with one-point real sounding have strong merit for practical dispersion model.

  • PDF

이상적인 중립 대기경계층에서 고밀도가스의 확산예측을 위한 라그랑지안 확률모델 (A Lagrangian Stochastic Model for Dense Gas Dispersion in the Neutrally-stratified Atmospheric Surface Layer)

  • 김병구;이창훈
    • 한국대기환경학회지
    • /
    • 제21권5호
    • /
    • pp.537-545
    • /
    • 2005
  • A new dispersion model for dense gas is constructed in the Lagrangian framework. Prediction of concentration by the proposed model is compared with measure data obtained in the experiment conducted in Thorney Island in 1984. Two major effects of dense gas dispersion, gravity slumping and stratification effect, are successfully incorporated into LDM (Lagrangian dense gas model). Entrainment effect is naturally modelled by introducing stochastic dispersion model with the effect of turbulence suppression by stratification. Not only various releasing conditions but also complex terrain can be extended to, although proposed model is appropriate for flat terrain.