• 제목/요약/키워드: atmospheric corrosion

검색결과 147건 처리시간 0.025초

ACSR 슬리브 개소에서의 송전선 재료특성 검토 (Material characteristic of ACSR due to eccentricity at sleeve point)

  • 강지원;홍동석;장태인;윤형희;이동일;최한열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.309-310
    • /
    • 2006
  • The considerations for remaining life of ACSR (Aluminum Stranded Conductors Steel Reinforced) in transmission lines has become gradually important to hold reliability and stability of power supply. The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. This paper deals with material characteristic of ACSR due to eccentricity at sleeve point. Test samples are ACSR 240[$mm^2$] conductors, which are real transmission lines. As a result, it is obvious that ACSR due to eccentricity may lead to mechanical deterioration.

  • PDF

해안지역 ACSR 가공지선의 기계적 특성 (Tensile Characteristics of ACSR Overhead Lines located in seaside)

  • 장태인;강지원;이동일;장인출
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1709-1711
    • /
    • 2001
  • The remaining life of ACSR(Aluminum Conductor Steel Reinforced) wires exposed to the atmosphere for a long period relies on the extent of deterioration caused by environmental factors such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. We investigated the tensile characteristics of ACSR wires in a coastal area through several mechanical tests, and analyzed the constituents of them using SEM(scanning electron microscope). Test samples are parts of ACSR 97[$mm^2$] overhead transmission lines in that area. The result shows that ACSR wires exposed to salt may lead to rapid mechanical deterioration.

  • PDF

화염에 노출된 가공송전선의 기계적.재료적 특성 검토 (Mechanical characteristic of overhead transmission lines by forest fires)

  • 강지원;장태인;김북규;박창기;방항권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.339-341
    • /
    • 2002
  • The remaining life of ACSR exposed to the atmosphere for a long period may rely on deterioration caused by environmental indices such as atmospheric corrosion, galvanic corrosion, crevice corrosion and fatigue corrosion. One of reduction of useful life in overhead transmission lines built on the ridge of mountain is often caused by forest fires. This paper deals with investigation of strength deterioration performance of ACSR due to fires through several testing and analyzing data for both tension load and material analysis. Test samples are ACSR $480[mm^2]$ conductors, which are artificially fired to regular durations. As a result, it can be verified that tension load of ACSR are reduced by increasing fro duration. Hence, it is obvious that ACSR due to forest fires may lead to mechanical deterioration.

  • PDF

차량구조물의 부식 거동에 관한 실험적 연구 (An experimental study on the corrosive behaviour of Rolling stock structures)

  • 오창록;김용기;장세기;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.346-351
    • /
    • 2004
  • The present paper describes an experimental study on the corrosive behaviour of Rolling stock structures. It is important to predict corrosive behaviour of rolling stock structures for safe service and to know relation between corrosion and fatigue life. This paper practiced atmospheric corrosion test of SS400 and SM490A. This study practiced an additional test on the influence of heat-treatment. This test will examine corrosive behaviour and differences of SS400 and SM490A.

  • PDF

Study of Chloride Corrosion Organic Inhibitors in Alkaline Pore Solution

  • Cabrini, M.;Lorenzi, S.;Pastore, T.;Pellegrini, S.
    • Corrosion Science and Technology
    • /
    • 제17권5호
    • /
    • pp.203-210
    • /
    • 2018
  • This paper compares the inhibition properties of aspartic and lactic acid salts with nitrite ions and their effect on critical chloride concentration. The tests were carried employing carbon steel specimens in saturated lime solution with varying pH in the range between13 to 13.6. The critical chloride concentration was estimated through multiple specimen potentiostatic tests at potentials in the usual range for passive rebar in the alkaline concrete of atmospheric structures. During tests, chloride salt was added every 48 h until all the specimens showed localized attacks. The cumulative distribution curves, i.e. the number of corroded specimens as a function of the chlorides concentration was obtained. Furthermore, IR spectra were recorded for the evaluation of the presence of the organic inhibitors on the passivity film. The results confirmed the inhibitory effect of 0.1M aspartate comparable with nitrite ions, at a similar concentration. Addition of calcium lactate did not result in an increase in the critical chloride concentration. However, the formation of a massive scale containing the substance that could reduce the corrosion propagation was observed.

A Study on the Application of Cathodic Protection for Anti-Corrosion of Automobile Body

  • Sohn, DaeHong;lee, Yongho;Jang, HeeJin;Cho, SooYeon
    • Corrosion Science and Technology
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2022
  • The use of cathodic protection for metals can be achieved by sacrificial anode CP or impressed current CP, or a combination of both. Cathodic protection is a highly effective anti-corrosion technique for submerged metals or metals in soil. But because the non-immersion atmospheric automobile environment is a high resistance environment, it is limited by fundamental cathodic protection. However, the application of cathodic protection to automobiles is attractive because of the possibility of maintaining corrosion resistance while using lower-cost materials. A commercially available product for automobiles that uses both sacrificial anode CP and impressed current CP was tested in a periodic salt spray environment to investigate the performance of the devices. Experimental results show that the metal to be protected has different anti-corrosion effects depending on the distance from the anode of the device, but it is effective for the entire 120 cm long specimen exposed with one anode. The cathodic protection is effective because the conductive tape attached to the anode of the structure to be protected acts as a constant electrolyte in wet and dry conditions. The results show that the entire standard passenger car can be protected by cathodic protection with 4 anodes.

Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution

  • Yun Zhao;Qi Guo;Zizhong Zhao;Xian Wu;Ying Xing
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.385-401
    • /
    • 2023
  • Steel is becoming increasingly popular due to its high strength, excellent ductility, great assembly performance, and recyclability. In reality, steel structures serving for a long time in atmospheric, industrial, and marine environments inevitably suffer from corrosion, which significantly decreases the durability and the service life with the exposure time. For the mechanical properties of corroded steel, experimental studies are mainly conducted. The existing numerical analyses only evaluate the mechanical properties based on corroded morphology at the isolated time-in-point, ignoring that this morphology varies continuously with corrosion time. To solve this problem, the relationships between pit depth expectation, standard deviation, and corrosion time are initially constructed based on a large amount of wet-dry cyclic accelerated test data. Successively, based on that, an in-situ pitting evolution method for evaluating the residual tensile strength of corroded steel is proposed. To verify the method, 20 repeated simulations of mass loss rates and mechanical properties are adopted against the test results. Then, numerical analyses are conducted on 135 models of corrosion pits with different aspect ratios and uneven corrosion degree on two corroded surfaces. Results show that the power function with exponents of 1.483 and 1.091 can well describe the increase in pit depth expectation and standard deviation with corrosion time, respectively. The effect of the commonly used pit aspect ratios of 0.10-0.25 on yield strength and ultimate strength is negligible. Besides, pit number ratio α equating to 0.6 is the critical value for the strength degradation. When α is less than 0.6, the pit number increases with α, accelerating the degradation of strength. Otherwise, the strength degradation is weakened. In addition, a power function model is adopted to characterize the degradation of yield strength and ultimate strength with corrosion time, which is revised by initial steel plate thickness.

FRP 어선 2종 스테인리스강 축의 음극방식을 위한 실용설계 및 적용방안 연구 (A Study on the Practical Cathodic Protection Design for the FRP Fishing Boat and It’s Application Scheme)

  • 강대선;김기준;이명훈;박정대;김태언
    • 선박안전
    • /
    • 통권21호
    • /
    • pp.66-77
    • /
    • 2006
  • Stainless steel has been stably used closed by passivity oxidation films(Cr₂O₃) is made by neutral atmospheric environment. However, passivity oxidaton films of the surface of stainless steel occasionally comes to be destroyed in seawater which is influenced by an environment having galogen ion like Cl‾, then, localization corrosion comes to occur Stainless steel 304 for shaft system material of the small-size FRP fishing boat on seawater environments made an experiment on simulation of sacrifical anode(Al, Zn). Through these experiment and study, following results have been obtained ; According to the field inspection and corrosion simulation, the corrosion on the 2nd class stainless steel shaft(STS304) in FRP fishing boat has been verified to occur by crevice corrosion and galvanic corrosion etc., According to the comparison and analysis of Stainless steel 304 was severely corroded, but, protected shaft specimen was not totallay corroded. This result is assumed to be made by the facts that anodic reaction, Fe → fe²++ 2e¯, has been restricted by the cathodic protection current of sacrificial anode material.

  • PDF