• 제목/요약/키워드: atmospheric cold plasma

검색결과 24건 처리시간 0.023초

Decomposition of Biological Macromolecules by Plasma Generated with Helium and Oxygen

  • Kim Seong-Mi;Kim Jong-Il
    • Journal of Microbiology
    • /
    • 제44권4호
    • /
    • pp.466-471
    • /
    • 2006
  • In this study, we attempted to characterize the biomolecular effects of an atmospheric-pressure cold plasma (APCP) system which utilizes helium/oxygen $(He/O_2)$. APCP using $He/O_2$ generates a low level of UV while generating reactive oxygen radicals which probably serve as the primary factor in sterilization; these reactive oxygen radicals have the advantage of being capable to access the interiors of the structures of microbial cells. The damaging effects of plasma exposure on polypeptides, DNA, and enzyme proteins in the cell were assessed using biochemical methods.

대기압 저온 플라스마를 이용한 산화막 및 고분자 재료의 표면개질 (Surface Modification of Conductive Oxide films and Polymer Materials Employing Atmospheric Cold Plasma Surface Modification of Conductive Oxide films and Polymer Materials Employing Atmospheric Cold Plasma)

  • 이봉주;이현규;김창석;이경섭;김형곤;장헌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 센서 박막재료
    • /
    • pp.32-34
    • /
    • 2001
  • we have quantitatively investigated the possibility of feeding oxygen radical in air environment. The oxygen radical generation from the plasma was verified and its efficiency was found to be dependent on the cathode material by the analysis with optical emission spectroscopy as well as by the quartz crystal micro-balance method.

  • PDF

Application of cold atmospheric microwave plasma as an adjunct therapy for wound healing in dogs and cats

  • Jisu Yoo;Yeong-Hun Kang;Seung Joon Baek;Cheol-Yong Hwang
    • Journal of Veterinary Science
    • /
    • 제24권4호
    • /
    • pp.56.1-56.13
    • /
    • 2023
  • Background: Cold atmospheric plasma is a novel innovative approach for wound care, and it is currently underrepresented in veterinary medicine. Objectives: To investigate the efficacy and safety of using cold atmospheric microwave plasma (CAMP) as an adjunct therapy for wound healing in dogs and cats. Methods: Wound healing outcomes were retrospectively analyzed using clinical records of client-owned dogs and cats who were first managed through standard wound care alone (pre-CAMP period) and subsequently via CAMP therapy (CAMP period). The degree of wound healing was estimated based on wound size and a modified wound scoring system. Results: Of the 27 acute and chronic wounds included in the analysis, 81.48% showed complete healing after the administration of CAMP as an adjunct therapy to standard care. Most wounds achieved complete healing in < 5 weeks. Compared with the pre-CAMP period, the rate of wound healing significantly increased every week in the CAMP period in terms of in wound size (first week, p < 0.001; second week, p = 0.012; third week, p < 0.001) and wound score (first week, p < 0.001; second week, p < 0.001; third week, p = 0.001). No adverse events were noted except for mild discomfort and transient erythema. Conclusions: CAMP is a well-tolerated therapeutic option with immense potential to support the treatment of wounds of diverse etiology in small animal practice. Further research is warranted to establish specific criteria for CAMP treatment according to wound characteristics.

Dentinal Tubules Occluding Effect Using Nonthermal Atmospheric Plasma

  • Lee, Chang Han;Kim, Young Min;Kim, Gyoo Cheon;Kim, Shin
    • International Journal of Oral Biology
    • /
    • 제43권2호
    • /
    • pp.83-91
    • /
    • 2018
  • Nonthermal atmospheric plasma has been studied for its many biomedical effects, such as tooth bleaching, wound healing, and coagulation. In this study, the effects of dentinal tubules occlusion were investigated using fluoride-carboxymethyl cellulose (F-CMC) gel, nano-sized hydroxyapatite (n-HA), and nonthermal atmospheric plasma. Human dentin specimens were divided to 5 groups (group C, HA, HAF, HAP, and HAFP). Group HA was treated with n-HA, group HAF was treated with n-HA after a F-CMC gel application, group HAP was treated with n-HA after a plasma treatment and group HAFP was treated with n-HA after a plasma and F-CMC gel treatment. The occlusion of dentinal tubules was investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS), which shows Ca/P ratio. In the EDS results, a higher Ca/P ratio was shown in the groups including n-HA than in the control group. The specimens of group HAP and HAFP had a higher Ca/P ratio in retentivity. In the SEM results, there was not a significant difference in the amount of times applied. Therefore, this study suggests F-CMC gel and n-HA treatment using nonthermal atmospheric plasma will be a new treatment method for decreasing hypersensitivity.

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

대기압 저온 플라스마에 의한 산화 주석 박막의 식각 (Dry etching of tin oxide thin films using an atmospheric pressure cold plasma)

  • 이봉주;히데오미코이누마
    • 한국진공학회지
    • /
    • 제10권4호
    • /
    • pp.411-415
    • /
    • 2001
  • 대기압 저온 플라스마를 사용하여 산화아연 박막의 건식 식각 가능성을 연구했다. 플라스마로부터 $H_\alpha^*$$CH_^*$ 라디컬 발생을 확인하였고, 라디컬 발생 능력은 광학 발광 스펙트럼 및 플라스마 임피던스 분석에 의해 캐소드 전극에 의존하는 것을 알았다. 식각능력은 플라스마 I-V커브에 의한 임피던스와 발광강도에 의해 계산되었다.

  • PDF

투명전도막 및 고분자 재료의 표면처리 (Surface Treatment of Transparent Conductive films and Polymer Materials)

  • 이봉주;이현규;정수복;이경섭;김형곤;정환기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 센서 박막재료
    • /
    • pp.15-17
    • /
    • 2001
  • A new possibility of our atmospheric cold plasma torch has been examined on the surface treatment of an air-exposed vulcanized rubber compound. The plasma treatment effect was evaluated by the bondability with another rubber compound using a polyurethane adhesive.

  • PDF

황축교류자계에 의한 대기중에서의 교류 아아크의 이동에 관한 연구 (A study on the A.C. arc movement in a transverse A.C. magnetic field at atmospheric pressure)

  • 전춘생;엄기환
    • 전기의세계
    • /
    • 제24권6호
    • /
    • pp.77-84
    • /
    • 1975
  • This paper treats A.C. arc movement in a transverse A.C. magnetic field at atmospheric pressure with the purpose of selecting electrode materials and obtaining detailed data for design of A.C. air circuit breaker, plasma accelerator and plasma jet. Arc velocities in transverse magnetic field are measured by varying arc current, arc voltage, gap length, magnetic flux density and the erosion of electrode surface, which influence arc velocities. The main results are; 1)Arc velocities in transverse magnetic field have different values according to electrodes of various materials and decrease in a descending order of cold cathode, medium cathode and hot cathode. 2)Arc velocities in transverse magnetic field increases with arc current, arc voltage, gap length and magnetic flux densith and on the other hand decrease with the increase of electrode surface erosion. 3)D.C.arc velocity in D.C. magnetic field is higher than A.C. arc velocity in A.C. magnetic field of the same value.

  • PDF

Surface Treatment of Polymer Materials and Transparent Conductive Films

  • Lee, Bong-Ju;Lee, Kyung-Sup
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권4호
    • /
    • pp.7-10
    • /
    • 2001
  • A new possibility of our atmospheric cold plasma torch has been examined on the surface treatment of an air-exposed vulcanized rubber compound. The plasma treatment effect was evaluated by the bondability with another rubber compound using a polyurethane adhesive. The adhesion property was improved by the treatment with plasma containing oxygen radicals. The oxygen radical generation from the plasma was verified and its efficiency was found to be dependent on the cathode material.

  • PDF

Evaluation of Nonthermal Plasma Treatment by Measurement of Stored Citrus Properties

  • Seo, Youngwook;Park, Jong-Ryul;Park, Hoe Man
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.401-409
    • /
    • 2018
  • Decay of fruit is one of the greatest issues in fruit storage. Purpose: In this study, citrus sterilization was performed to evaluate a dry sterilization method using an atmospheric-pressure nonthermal plasma treatment based on a dielectric-barrier discharge technique. Methods: Citrus samples were stored under four different environmental conditions as follows: group A had cold storage with plasma treatment with a temperature of $6.2{\pm}1.0^{\circ}C$ and relative humidity (RH) of $93.4{\pm}8.2%$, group B had ambient-temperature storage with $22.9{\pm}2.3^{\circ}C$ and $82.1{\pm}4.5%$ RH, group C ambient-temperature storage with plasma treatment with $25.3{\pm}2.2^{\circ}C$ and $90.0{\pm}2.8%$ RH, and group D had cold storage with $5.7{\pm}1.0^{\circ}C$ and $93.4{\pm}6.5%$ RH. Results: As a result of citrus surface sterilization by plasma treatment, treatment groups A and C together showed an average of 16.1 CFU/mL of mold colonies, while control groups B and D showed an average of $2.2{\times}10^2CFU/mL$ or approximately 13 times greater than the treatment groups. Regarding the mean concentration of aerobic bacteria colonies, the treatment groups (A and C) and control groups (B and D) showed an average of 7.1 CFU/mL and $1.9{\times}10^3CFU/mL$, respectively. This is approximately a 270-fold difference in the concentration of pathogen colonies between treatment and control groups. Conclusions: The results showed the potential of nonthermal plasma treatment for citrus storage in enhancing storage duration and quality preservation.