• Title/Summary/Keyword: atmospheric $CO_2$ concentration

Search Result 326, Processing Time 0.026 seconds

A Study on the Generation and Movement of Low-concentration $CO_2$ in Summer at Gosan, Korea (제주도 고산지역 여름철 저농도 이산화탄소의 발생원인과 이동경로에 관한 연구)

  • Kang, Kyeoung-Sik;Moon, Il-Ju;Hwang, Seung-Man;Shin, Dong-Suk;Yoon, Soon-Chang
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.307-318
    • /
    • 2010
  • This study investigates the generation and movement of low-concentration $CO_2$ observed in Gosan during summer from 2002 to 2006. For analysis, additional $CO_2$ data in Anmyeondo, Ryori, Barrow, and Minamitorishima as well as NOAA/ESRL daily global $CO_2$ fields, background trajectories data, and 850 hPa wind fields are also used. Based on analyses using various observed data, we classified three types of low-concentration $CO_2$ in Gosan according to its origin: i) the origin of the Siberian continental, in which the consumption of $CO_2$ is active due to photosynthesis from broad forests, ii) the origin of Okhotsh and Artic seas, in which the low-concentration $CO_2$ is dominant due to high primary productivity by a plankton bloom, and iii) the origin of the Northwestern Pacific which is related to the entry of air mass from high latitudes. These results show that the low-concentration $CO_2$ observed in Gosan during summer is not originated from the Pacific oceans as known in previous studies, but originated from high latitude regions such as the Siberian continental and the Okhotsh and Artic seas.

Survey on Air Pollution in Underground Commercial Floor of Pusan Areas (부산지역 지하상가의 대기오염도에 관한 조사 연구)

  • 이채언;문덕환;조병만;김준연;배기철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.22-32
    • /
    • 1989
  • In order to assess the level of atmospheric pollution and to contribute the health improve ment of residents in Pusan, the authors measured the $CO, SO_2, NO_2, TSP, Noise, Pb, Cd, Cr and V$ level at 3 place by time from Jan. 1988 to Feb. 1988. THe places were Kukje, Daehyeon, Pujeon underground commercial floor. The results were as follows; 1. The range of concentration of air pollutants (1) CO : 0.5 - 3.0 ppm (2) $SO_2$ : 0.012 - 0.360 ppm (3) $NO_2$ : 0.018 - 0.089 ppm (4) TSP : 30 - 330 $\mug/m^3$ (5) Pb : 0.219 - 3.116 $\mug/m^3$ (6) Cd : 0.000 - 0.070 $\mug/m^3$ (7) Cr : 0.378 - 4.098 $\mug/m^3$ (8) V : 0.000 - 1.010 $\mug/m^3$ (9) Noise : 47 - 77 dB(A) 2. The level of all air pollutants were higher in the afternoon or night than in the morning. 3. The mean concentration of $SO_2$ in all places exceede the ambient air quality standard of $SO_2$,.

  • PDF

A Case Study of High Concentration and Seasonal Characterization of Atmospheric $CO_2$ measured at Anmyon-Island. (안면도에서 측정된 $CO_2$농도의 계절적 특성 및 고농도 사례 연구)

  • 김정식;최재천;윤용훈;차주완;방소영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.231-232
    • /
    • 2000
  • 세계기상기구(World Meteorological Organigation : WMO)에서는 추진하고 있는 지구대기감시(Global Atmosphere Watch : GAW)계획을 효율적으로 수행하기 위하여 기상청에서는 안면도 위치한 기존의 배경대기관측소를 2000년 8월부터 지구대기감시관측소로 개칭하고 업무의 추진을 강화하고 있으며 온실기체는 CFCs, CH$_4$, $N_2$O의 경우 1998년 4월부터, $CO_2$는 8월부터 연속 관측을 실시하고있다. (중략)

  • PDF

Photosynthetic Characteristics and Cellular Tissue of Chinese Cabbage are Affected by Temperature and $CO_{2}C$ Concentration (온도와 $CO_{2}C$ 농도에 따른 배추의 광합성특성 및 세포조직의 변화)

  • Lee, Sang-Gyu;Moon, Ji-Hye;Jang, Yoon-Ah;Lee, Woo-Moon;Cho, Ill-Hwan;Kim, Seung-Yu;Ko, Kwan-Dal
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.148-152
    • /
    • 2009
  • Numerous studies have presented evidence that global atmospheric carbon dioxide ($CO_{2}$ ) concentration and temperature is increasing every year. Both of the $CO_{2}$ and temperature are important components for photosynthesis activity of plants and thusgrowth and yield. However, little information is available in terms of the reaction of vegetable plants to increased $CO_{2}$ concentration and temperature, and also the reaction to a complex condition of both increased $CO_{2}$ concentration and temperature. The aim of this research was therefore to investigate changes in growth, photosynthetic activity and ultra-cellular structure of leaf tissue of Chinese cabbage. Plants were grown under either of elevated $CO_{2}$ concentration (elevated $CO_{2}$, 2-fold higher than atmospheric $CO_{2}$ ) or elevated temperature (elevated temp, 4$^{\circ}C$ higher than atmospheric temperature), under both of elevated $CO_{2}$ concentration and elevated temperature (elevated temp+$CO_{2}$), and under atmospheric $CO_{2}$ concentration and temperature (control). The treatment of 'elevated temp' negatively affected leaf area, fresh weight, chlorophyll and starch content. However, when the treatment of 'elevated temp' was applied coincidently with the treatment of 'elevated $CO_{2}$', growth and photosynthetic performance of plants were as good as those in the treatment of 'elevated $CO_{2}$', Microscopic study resulted that the highest starch content and density of cells were observed in the leaf tissue grown at the treatment of 'elevated $CO_{2}$', whereas the lowest ones were observed in the leaf tissue grown at the treatment of 'elevated temp'. These results suggest that when Chinese cabbage grows under a high-temperature condition, supplement of $CO_{2}$ would improve the growth and yield. In our knowledge, it is the first time to determine the effect of a complex relationship between the increased $CO_{2}$ concentration and temperature on the growth of Chinese cabbage.

On the background levels of $CO_2$ observed at Tae-ahn Peninsula in Korea during 1990-1992 (한국의 태안반도에서 관측된 이산화탄소의 배경농도에 관한 연구)

  • 이근준;정용승
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.61-68
    • /
    • 1993
  • Since November 1990, the observations of carbon dioxide$(CO_2)$ levels have been carried out at Tae-ahn Peninsula(TAP) in Korea. Analysis on atmospheric data obtained in the period from November 1990 to August 1992 is carried out and the results are included in this study. It is observed that variations of monthly average level on $CO_2$ are in the range of 315.72 $\sim$ 365.37ppm(amplitude 17.65ppm). The seasonal variation is large with a maximum occurring in March-April and with a minimum in July-August. A comparison of TAP data is made with data obtained at Ryori in Japan for 1991. The annual average value of TAP is 1.79ppm higher than that of Ryori. It is also found that in summer the minimum level of $CO_2$ at TAP is almost same as the $CO_2$ level occurring at Quinghai Province in China and at Ulaan Uul in Mongolia. Albeit, a maximum concentration of $CO_2$ at TAP is slightly higher than that of the same gas observed at other sites in spring. We interpret that TAP is generally under the influence of airflows coming from China. According to analysis of trajectories and airflows, we find the high values of $CO_2$ when an air flow is originated mainly from China and when an airflow is both of local(Korea) and of China origins. In contrast, when an airflow of maritime origin arrives, a low value of the atmospheric constituent is observed at TAP.

  • PDF

Nocturnal Inversion Layer observed by Tethersonde and AWS System and its Relation to Air Pollution at Ulsan (Tethersonde와 기상탑 관측 자료를 이용한 울산지역 야간 역전에 따른 대기오염도 변화와의 관계)

  • Lim Yun-Kyu;Kim Yoo-Keun;Oh In-Bo;Song Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.555-563
    • /
    • 2005
  • This study presents the characteristics of nocturnal inversion layer and their effect on the concentration variations of surface air pollutants using tethersonde and automatic weather station (AWS, 2 layer tower) system in Ulsan during 2003, The method for the distinction of inversion intensity was decided based on the sum of nocturnal temperature gradient. As the results, there was a close correlation (correlation coefficient of 0,76) between the maximum inversion height obtained from tethersonde and the sum of nocturnal temperature gradient. The air pollutant concentration was also directly proportional to the inversion intensity. When the inversion intensity was strong in the nighttime, ozone $(O_3)$ concentration was lower, while nitrogen dioxide $(NO_2)$ concentration was higher. The carbon monoxide (CO) concentration was gradually higher according to the nocturnal inversion intensity, whereas sulfur dioxide $(SO_2)$ concentration was relatively constant. In addition, we found that there was no correlation between the inversion intensity and TSP concentration.

The Development of Emission Factors of Greenhouse Gas from Middle and Small-Scaled RPF Incineration Facility by Concentration Measurement and Fuel Composition (농도실측 및 연료 성분조성에 의한 중소형 RPF 소각시설의 온실가스 배출계수 개발)

  • Na, Kyung-Ho;Song, Il-Seok;Choi, Si-Lim;Yoo, Jae-In;Park, Ik-Beom;Kim, Jin-Gil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.423-434
    • /
    • 2012
  • This study was carried out to develop for the emission factor of greenhouse gas (GHG) from medium and smallscaled incineration facility using RPF which is considering as a part of renewable energy in UNFCC. The actual concentration of the exhaust gas and the fuel composition of RPF were measured for the calculation of GHG emission factor in RPF incinerators, and were compared with the IPCC guideline. The $CO_2$ and $N_2O$ emission factors by the actual concentration of exhaust gas were $2.3575{\pm}1.0070tCO_2/tRPF$ and $0.0014{\pm}0.0014tN_2O/tRPF$ respectively. Also, $CO_2$ emission factor by the RPF composition was $2.7057{\pm}0.0540tCO_2/tRPF$. The GHG emission factor per energy by the actual concentration was $83.0867{\pm}26.0346tCO_2e/TJ$ which showed higher consistency with the GHG emission factor ($80.3967tCO_2e/TJ$) of waste plastic in the IPCC guideline (2006b). The $CO_2$ and $N_2O$ emission factor calculated in this study is considered as a meaningful data for GHG emission factor of RPF incineration facility because of not being developed in ROK.

Yearly Variation and Influencing Factors of Ozone Concentration in the Ambient Air of Seoul (서울시 대기중 오존오염도의 연도별 변화와 그 영향인자 분석: 광화문 지역을 중심으로)

  • Lee, Ki-Won;Kwon, Sook-Pyo;Chung, Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.107-115
    • /
    • 1993
  • This study was carried out to find the characteristics of surface ozone concentration data obtained during 1988-1991 by the Korea Ministry of Environment. Seasonal data (spring, summer, autumn and winter) wre obtained in May, August, November and February respectively at Kwanghwamun in Seoul. The pollutants analyzed in this study are $SO_2, TSP, CO, NO, NO_2 and NO_2/NO$. Atmospheric factors such as solar radiation, wind speed, relative humidity, cloud amount and atmospheric temperature are also analyzed. The influence of pollutants and atmospheric factors that affect ozone concentration were analyzed by statistical method. The results are summarized as follows : 1. The ozone concentration varied seasonally. The maximum values were 23 ppb in spring, 33 ppb in summer, 16 ppb in autumn and 13 ppb in winter. So the seasonal ozone value was highest in Summer. 2. Te diurnal concentration of ozone was highest during 2-4 P. M. and was very low in the morning and evening. 3. The maximal correlation coefficients of each season between ozone concentration and the influencing pollutants or atmospheric factors asr as follows ; a. spring, r = 0.44(solar radiation) b. summer, r = -0.59(relative humidity) c. autumn, r = -0.55(relative humidity) d. winter, r = -0.58($NO_2$) 4. The major factor affecting the ozone concentration in spring was solar radiation, Relative humidity was the first affecting factor in summer, autumn and $NO_2$ concentration was dominant in winter.

  • PDF

Quantitative Analysis of CO2 Reduction by Door-opening in the Subway Cabin (출입문 개폐에 의한 전동차 객실 CO2 저감효과 분석)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.153-161
    • /
    • 2008
  • The guidelines for indoor air quality of public transportations such as subway, train and bus was presented by Korean Ministry of Environment last end of year 2006 based on the great consequence of indoor air quality in daily life. Two main parameters, carbon dioxide($CO_2$) and particulate matters smaller than $10\;{\mu}m(PM_{10})$, were selected as index pollutants for the management of indoor air quality. The former pollutant, $CO_2$, is regarded as index of ventilation status and the major source of $CO_2$ in the train or subway is the exhalation of passengers. It is publically perceived that the high $CO_2$ concentration in a crowded subway will be reduced and ventilated with outdoor air by door-opening taken every 2 or 3 minutes when the train stops each station. However, there has not been any scientific proof and quantitative information on the effect of door-opening on the $CO_2$ reduction by ventilation with outdoor air. In this study, $CO_2$ concentration and number of passengers were measured at each station on the 3 lines of Korail metropolitan subway. In order to evaluate the effect of $CO_2$ reduction by door opening, the theoretical approach using the $CO_2$ balance equation was performed. By comparing the predicted data with monitoring one, the optimum $CO_2$ dilution factor was determined. For the first time, it was quantified that about 35% of $CO_2$ concentration in the subway indoor was removed by the door-opening at each station.

Water table: The dominant control on CH4 and CO2 emission from a closed landfill site

  • Nwachukwu, Arthur N.;Nwachukwu, Nkechinyere V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.123-133
    • /
    • 2020
  • A time series dataset was conducted to ascertain the effect of water table on the variability in and emission of CH4 and CO2 concentrations at a closed landfill site. An in-situ data of methane/carbon dioxide concentrations and environmental parameters were collected by means of an in-borehole gas monitor, the Gasclam (Ion Science, UK). Linear regression analysis was used to determine the strength of the correlation between ground-gas concentration and water table. The result shows CH4 and CO2 concentrations to be variable with strong negative correlations of approximately 0.5 each with water table over the entire monitoring period. The R2 was slightly improved by considering their concentration over single periods of increasing and decreasing water table, single periods of increasing water table, and single periods of decreasing water table; their correlations increased significantly at 95% confidence level. The result revealed that fluctuations in groundwater level is the key driving force on the emission of and variability in groundgas concentration and neither barometric pressure nor temperature. This finding further validates the earlier finding that atmospheric pressure - the acclaimed major control on the variability/migration of CH4 and CO2 concentrations on contaminated sites, is not always so.