• Title/Summary/Keyword: at-speed

Search Result 14,738, Processing Time 0.034 seconds

Effect of Walking Speed on Angles of Lower Extremity and Ground Reaction Force in the Obese (보행속도가 비만인의 하지관절각과 지면반발력에 미치는 영향)

  • Kim, Tae-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.83-94
    • /
    • 2006
  • The purpose of this study is to elucidate how walking speed influences on change of angles of lower extremity and ground reaction force in normal and obese people. One group with normal body weight who were experimented at a standard speed of 1.5m/s and the other obese group were experimented at two different walking speeds (standard speed of 1.5m/s and self-selected speed of 1.3m/s). We calculated angles of lower extremity and ground reaction force during stance phase through video recording and platform force measuring. When the obese group walked at the standard speed, dorsi-flexion angle of ankle got bigger and plantar-flexion angle of ankle got smaller, which were not statistically significant. There was no significant difference of knee joint angles between normal and obese group at the same speed walking but significant post hoc only for the first flexion of knee joint in obese group. $F_z1$ was bigger than $F_z3$ in vertical axis for ground reaction force in both groups at the standard speed walking and the same force value at self-selected speed in obese group. $F_y3$ was always bigger than $F_y1$ in anterior-posterior axis in both groups.

Analysis of the Crankshaft Speed Fluctuation in Intra-Cycle (사이클 내 크랭크축 각속도의 변동 해석)

  • 배상수;임인건;김세웅;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.166-172
    • /
    • 1996
  • This paper presents the characteristics of the crankshaft speed fluctuations. To analyze them, the speed waveforms were measured both at the flywheel and at the front end of the engine. The speed waveform measured at the flywheel shows better result than at the front end one, because of the torsional vibration and the auxiliary components. And the patterns of the speed fluctuations are classified into three region, such as low load, middle load and high load region with the variations of the loads. Additionally, as the engine speeds increase and the loads decrease, the analysis of the speed becomes more difficult due to lower variation of the speed. And in all the regions, the main frequency component of the speed fluctuation is firing frequency.

  • PDF

The Effect of the Speed of a Ship on Her Turning Circle (선속이 선회권에 미치는 영향에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

  • PDF

The Effect of the Speed of a Ship on Her Turning Circle (선속이 선회권에 미치는 영향에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.210-210
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

A Safety Assessment and Vibration Characteristics of Railway Vehicle Passing Curves (곡선부 통과 차량의 진동특성 및 안전성 평가)

  • Park, Kwang-Soo;Lee, Seung-Il;Lee, Hi-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.993-1001
    • /
    • 2007
  • An analysis model has been developed to assess running safety of railway vehicle passing curves. By using ADAMS/Rail, a computer analysis has been conducted by changing various parameters according to the track conditions. Analysis results show as follows: A derailment coefficient of left wheel was increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A unload rate of left wheel was also increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A wear number of left wheel was increased according to increase of cant at all speed, but only at 35 m/s, it was decreased as increase of cant. A friction coefficient of left wheel was Increased according to increase of cant at all speed, but only at 35 m/s. it was decreased as increase of cant.

Low Speed Control of Induction Machine by Instantaneous Speed Estimation (순시 속도 추정에 의한 유도 전동기의 저속 운전)

  • Kwon, Bong-Hyun;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.100-102
    • /
    • 1993
  • This paper proposes a control method of induction machine at a low speed range. When an encoder is used for speed detection, we usually obtain speed information from the increased pulse number. At low speed range, however, we can get only average speed between encoder pulses and it makes speed controller unstable. By using a disturbance observer and torque current, it is possible to estimate accurate speed information. The simulation and experiment show that the stable speed control is performed at a low speed with proposed algorithm.

  • PDF

Improvement of Low Speed Characteristics in Induction Motor Drives by Reduced Order Torque Observer (감소차원 토크관측기를 이용한 유도전동기의 저속운전특성 개선)

  • 유영석;윤덕용;홍순찬
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.177-181
    • /
    • 1997
  • In the speed control system of motors using the low resolution rotary encoder, the period of encoder pulse becomes longer than the sampling time for speed control in the range of very low speed. Therefore, it is difficult to obtain accurate speed information. In this paper, the speed estimating method at the very low speed region using reduced order torque observer, which has been widely used, is examined. The results of simulation show that the characteristics of the speed control at the very low speed region is improved by using the reduced order torque observer.

  • PDF

The Effect of Water Depth and Exercise Speed on Physiological Responses Immediately After Aquatic Squat Exercise

  • Gyu-sun, Moon
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.185-193
    • /
    • 2024
  • This study aimed to investigate the immediate physiological responses, including heart rate, blood pressure, and rate pressure product (RPP), following squat exercises performed at three water depths (ground, knee depth, waist depth) and two speed conditions (60bpm speed, Max speed). The participants consisted of 10 men in their 20s with over 6 months of resistance exercise experience. For the 60bpm speed squats, participants performed 30 repetitions in 1 minute at a rate of 2 seconds per repetition, while for Max speed squats, they performed at Max speed without a set limit on the number of repetitions for 1 minute. All experiments were conducted with a random assignment. The study results showed that immediately after the aquatic squat exercise, the average heart rate, blood pressure, and cardiac load were higher in the order of knee depth, ground level, and waist depth at both 60bpm speed and Max Speed. At 60bpm speed, the heart rate was higher in the order of ground level, knee depth, and waist depth. Overall, exercise in an aquatic environment was considered to impose relatively lower physical burden compared to land-based exercise. Therefore, it is suggested that depending on individual fitness levels and exercise goals, appropriately combining aquatic exercise, which imposes lower immediate physiological burden, and land-based exercise may lead to safer and more effective exercise methods.

Relationship between Walking Speed and Smoothness of Movement (보행속력과 동작의 부드러움과의 상관관계에 관한 연구)

  • Tack, Gye-Rae;Han, Young-Min;Choi, Jin-Sung;Yi, Jeong-Han;Lim, Young-Tae;Jun, Jae-Hoon;Park, Sang-Kyoon;Stephanyshin, Darren;Park, Seung-Ha
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.11-17
    • /
    • 2006
  • The purpose of this study was to evaluate the smoothness of movement during various walking speeds. Based on the maximum smoothness theory (or the minimum jerk theory), we hypothesized that the walking speed at the maximum smoothness (or minimum normalized jerk) is the same as that at the minimum energy consumption. Eleven university students participated in treadmill walking experiment with 11 different walking speeds (1.11, 1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 211, 233, and 2.47m/sec). Normalized jerk at 15 markers and the center of mass was calculated. Results showed that there existed a quadratic relationship between the normalized jerk of the vertical direction at the center of mass and the walking speed As the walking speed increased, the normalized jerk of all directions at the heel decreased Our hypothesis that the previously published energetically optimal walking speed ($1.25\;{\sim}\;1.4m/s$) is the same as the minimum jerk speed (1.78m/s) did not agree with this result. The minimum normalized jerk at the center of mass occurred at the walking speed of 1.78m/s which was the preferred walking speed by subjects' questionaries. Further studies concerning the energetically optimal walking speed, preferred walking speed, and walk-run transition speed or run-walk transition speed are necessary based on actual energy consumption experiment and various multi-dimensional analysis.

Sensor less Speed Control of Induction Motor at Wide Speed Control Range Using High Frequency Voltage Signal Injection (고주파 전압 신호주입을 이용한 속도검출기가 없는 유도전동기의 광범위 속도 제어)

  • Son, Yo-Ch'an;Ha, Jung-Ik;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.182-185
    • /
    • 1998
  • This paper describes a field orientation control of an induction motor without any speed transducer and proposes a wide-range speed control strategy with the field orientation algorithm. The difference at impedances between the direct and quadrature axis at the injected signal is used for the sensorless field orientation control. But this algorithm has some limitations and should be supported by other method at high speed. In this paper, a sensorless speed control at an induction motor for wide speed range operation is proposed. The proposed algorithm is verified by experimental results.

  • PDF