• Title/Summary/Keyword: asynchronous scheduling

Search Result 39, Processing Time 0.02 seconds

A Heuristic Algorithm for FMS Scheduling Using the Petri Net (페트리네트를 이용한 FMS스케줄링에 대한 발견적 해법)

  • 안재홍;노인규
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.2
    • /
    • pp.111-124
    • /
    • 1996
  • The main purpose of this study is to develop an algorithm to solve the scheduling problems of FMS using Petri-net is well suited to model the dynamics of FMS and Petri-net is an ideal tool to formulate scheduling problems with routing flexibility and shared resources. By using the marking of Petri-net, We can model features of discrete even system, such as concurrency, asynchronous, conflict and non-determinism. The proposed algorithm in this paper can handle back-tracking using the marking of Petri-net. The results of the experiment show that marking is one of the best ways that describe exactly movement of the discrete event system. To show the effectiveness of the algorithm suggested here, we compare it with L1 algorithm using the Petri-net through the test on randomly generated test problems.

  • PDF

A Scheduling and Synchronization Technique for RAPIEnet Switches Using Edge-Coloring of Conflict Multigraphs

  • Abbas, Syed Hayder;Hong, Seung Ho
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.321-328
    • /
    • 2013
  • In this paper, we present a technique for obtaining conflict-free schedules for real-time automation protocol for industrial Ethernet (RAPIEnet) switches. Mathematical model of the switch is obtained using graph theory. Initially network traffic entry and exit parts in a single RAPIEnet switch are identified, so that a bipartite conflict graph can be constructed. The obtained conflict graph is transformed to three kinds of matrices to be used as inputs for our simulation model, and selection of any of the matrix forms is application-specific. A greedy edge-coloring algorithm is used to schedule the network traffic and to solve the minimum coloring problem. After scheduling, empty slots are identified for forwarding the non real-time traffic of asynchronous devices. Finally, an algorithm for synchronizing the schedules of adjacent switches is proposed using edge-contraction and minors. All simulations were carried out using Matlab.

MAC Scheduling Algorithm in IEEE 802.15.3 HR-WPAN (고속 무선 개인화 네트워크를 위한 MAC 스케줄링 알고리즘)

  • Joo Sung-Don;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.41-52
    • /
    • 2005
  • In wireless networks there are various errors, caused by multi-path fading and interference between devices which lower the network Performance. Especially, performance of IEEE 802.IS.3 High-Rate WPAN (Wireless Personal Area Network) which is operated in ISM unlicensed frequency band is easily affected by channel errors. In this paper, we propose a scheduling algorithm which takes channel errors into consideration in scheduling asynchronous data traffic. The proposed scheduling algorithm can allocate CTA(Channel Time Allocation) proportionally in accordance with the requested channel time of each device. It also prevents waste of channel time by allocating CTA of the channel-error devices to other channel-error free devices. After recovering from the channel error, the devices are compensated as much as they conceded during channel error status. Simulation results show that the proposed scheduling algorithm is superior to the existing SRPT(Shortest Remain Processing Time) and RR(Round Robin) in throughput and fairness aspects.

Hybrid Buffer Structured Optical Packet Switch with the Limited Numbers of Tunable Wavelength Converters and Internal Wavelengths (제한된 수의 튜닝 가능한 파장변환기와 내부파장을 갖는 하이브리드 버퍼 구조의 광 패킷 스위치)

  • Lim, Huhn-Kuk
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.171-177
    • /
    • 2009
  • Optical packet switching(OPS) is a strong candidate for the next-generation internet, since it has a fine switching granularity at the packet level for providing flexible bandwidth, and provides seamless integration between WDM layer and IP layer. Optical packet switching have been studied in two categories: OPS in synchronous and OPS in asynchronous networks. In this article we are focused on contention resolution of OPS in asynchronous networks. The hybrid buffer have been addressed, to reduce packet loss further as one of the alternative buffer structures for contention resolution of asynchronous and variable length packets, which consists of the FDL buffer and the electronic buffer. The OPS design issue for the limited number of TWCs and internal wavelengths is important in the aspect of switch cost and resource efficiency. Therefore, an hybrid buffer structured optical packet switch and its scheduling algorithm is presented for considering the limited number of TWCs and internal wavelengths, for contention resolution of asynchronous and variable length packets. The proposed algorithm could lead to the packet loss improvement compared to the legacy LAUC-VF algorithm with only the FDL buffer.

  • PDF

Real-time distributed industrial process control system (실시간 분산 공정 제어 시스템)

  • 이도영;윤창진;전태웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.158-163
    • /
    • 1986
  • This article surveys techniques and issues related to real time process control system developed for industrial control applications. It covers the system architecture and software engineering issues such as the design of data structures, scheduling of asynchronous task activities, management of shared resources, handling of interrupt and implementing an user friendly man-machine interface. Also problems associated with implementing a real-time system that supports dynamic configuration of data base is addressed.

  • PDF

A Study on the Buffer Management and Scheduling of TCP/IP for GFR service in the ATM networks (ATM망에서 GFR서비스를 위한 TCP/IP의 버퍼 관리방법과 스케쥴링에 관한 연구)

  • 문규춘;최현호;박광채
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.275-278
    • /
    • 2000
  • Recently ATM(Asynchronous Transfer Mode) technology is facing challenges from Integrated Service IP(Internet Protocol), IP router, Gigabit Ethernet. Although ATM is approved by ITU-T as the standard technology in B-ISDN, its survival is still in question. In the ATM networks, the Guaranteed Frame Rate(GFR) service has been designed to accommodate non-real-time applications, such as TCP(Transmission Control Protocol)/IP based traffic. The GFR service not only guarantees a minimum throughput at the frame level, but also supports a fairshare of available resources. We have studied different discarding and scheduling schemes, and compared their throughput and fairness when TCP/IP Traffic is carried. Through simulations, we know that only per-VC queueing with weighted Round Robin(WRR) can guarantee Minimum Cell Rate Among all the Schemes that have been experimented, we recommend DT-EPD(Dynamic Threshold-Early Packet Discard) integrated with MCRplus(Minimum Cell Rate) to support the GFR service.

  • PDF

Scheduling Method to Improve fairness of ABR Service in ATM Network (ATM망에서 ABR서비스의 공평성 향상을 위한 스케줄링 방법)

  • 양형규;이병호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.129-132
    • /
    • 2001
  • Broadband Integrated Services Digital Network(B-lSDN) supports multimedia information in real time. This can be accomplished by using Asynchronous Transfer Mode(ATM) technology. In addition, ATM networks can provide not only bandwidth reservation, but also Quality of Service(QoS) guarantees. In this paper, we propose a efficient cell scheduling algorithm considering ABR service in ATM networks. The proposed algorithm can support ABR service more efficiently than existing fixed cell slot allocation method and priority cell slot allocation method algorithm. proposed algorithm dynamically schedules cells in a real time by considering the current traffic buffer conditions. Throughout the computer simulation, evaluates the performance of the proposed algorithm.

  • PDF

A study on improvement of policing perfomance by usage parameter control in asynchronous transfer mode networks (ATM망에서 사용자 변수 제어에 의한 감시 성능 개선에 관한 연구)

  • 한길성;오창석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1480-1489
    • /
    • 1996
  • In ATM networks there are two methods in traffic control as schemes advancing the quality of service. One is reactive control after congestion and the other which is generally recommended, is preventive control before congestion, including connection admission control on call leel and usage parameter control, network parameter control, priority control and congestion control on cell level. In particular, usage parameter control is required for restricting the peak cell rate of bursy tracffic to the parameter negotiated at call set-up phase since the peak cell rate significantly influences the network quality of service. The scheme for progressing quality of service by usage parameter control is themethod using VSA(Virtual Scheduling Algorlithm) recommended ITU-T. The method using VSSA(Virtual Scheduling Suggested Algorlithm) in this paper is suggested by considering cell delay variation and token rate of leaky bucket, compared VSA and VSANT(Virtual Scheduling Algolithm with No Tolerance) with VSSA which polices violated cell probability of conformed peak cell rate and intentionally excessive peak cell rate. VSSA method using IPP(Interruped Poisson Process) model of input traffic source showed more quality of service than VSA and VSANT methods as usage parameter control because the suggested method reduced the violated cell probability of contformed peak cell rate and intentionally excessive peak cell rate.

  • PDF

Tramsmission Method of Periodic and Aperiodic Real-Time Data on a Timer-Controlled Network for Distributed Control Systems (분산제어시스템을 위한 타이머 제어형 통신망의 주기 및 실시간 비주기 데이터 전송 방식)

  • Moon, Hong-ju;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.602-610
    • /
    • 2000
  • In communication networks used in safety-critical systems such as control systems in nuclear power plants there exist three types of data traffic : urgent or asynchronous hard real-time data hard real-time periodic data and soft real-time periodic data. it is necessary to allocate a suitable bandwidth to each data traffic in order to meet their real-time constraints. This paper proposes a method to meet the real-time constraints for the three types of data traffic simultaneously under a timer-controlled token bus protocol or the IEEE 802.4 token bus protocol and verifies the validity of the presented method by an example. This paper derives the proper region of the high priority token hold time and the target token rotation time for each station within which the real-time constraints for the three types of data traffic are met, Since the scheduling of the data traffic may reduce the possibility of the abrupt increase of the network load this paper proposes a brief heuristic method to make a scheduling table to satisfy their real-time constraints.

  • PDF

MUVIS: Multi-Source Video Streaming Service over WLANs

  • Li Danjue;Chuah Chen-Nee;Cheung Gene;Yoo S. J. Ben
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.144-156
    • /
    • 2005
  • Video streaming over wireless networks is challenging due to node mobility and high channel error rate. In this paper, we propose a multi-source video streaming (MUVIS) system to support high quality video streaming service over IEEE 802.1l-based wireless networks. We begin by collocating a streaming proxy with the wireless access point to help leverage both the media server and peers in the WLAN. By tracking the peer mobility patterns and performing content discovery among peers, we construct a multi-source sender group and stream video using a rate-distortion optimized scheme. We formulate such a multi-source streaming scenario as a combinatorial packet scheduling problem and introduce the concept of asynchronous clocks to decouple the problem into three steps. First, we decide the membership of the multisource sender group based on the mobility pattern tracking, available video content in each peer and the bandwidth each peer allocates to the multi-source streaming service. Then, we select one sender from the sender group in each optimization instance using asynchronous clocks. Finally, we apply the point-to-point rate-distortion optimization framework between the selected sender-receiver pair. In addition, we implement two different caching strategies, simple caching simple fetching (SCSF) and distortion minimized smart caching (DMSC), in the proxy to investigate the effect of caching on the streaming performance. To design more realistic simulation models, we use the empirical results from corporate wireless networks to generate node mobility. Simulation results show that our proposed multi-source streaming scheme has better performance than the traditional server-only streaming scheme and that proxy-based caching can potentially improve video streaming performance.