• 제목/요약/키워드: asymptotic attached prime ideal

검색결과 3건 처리시간 0.014초

Asymptotic behavior of ideals relative to injective A-modules

  • Song, Yeong-Moo
    • 대한수학회논문집
    • /
    • 제10권3호
    • /
    • pp.491-498
    • /
    • 1995
  • This paper is concerned with an asymptotic behavior of ideals relative to injective modules ove the commutative Noetherian ring A : under what conditions on A can we show that $$\bar{At^*}(a,E)=At^*(a,E)$?

  • PDF

THE STABILITY OF CERTAIN SETS OF ATTACHED PRIME IDEALS RELATED TO COSEQUENCE IN DIMENSION > k

  • Khanh, Pham Huu
    • 대한수학회보
    • /
    • 제53권5호
    • /
    • pp.1385-1394
    • /
    • 2016
  • Let (R, m) be a Noetherian local ring, I, J two ideals of R, and A an Artinian R-module. Let $k{\geq}0$ be an integer and $r=Width_{>k}(I,A)$ the supremum of lengths of A-cosequences in dimension > k in I defined by Nhan-Hoang [9]. It is first shown that for each $t{\leq}r$ and each sequence $x_1,{\cdots},x_t$ which is an A-cosequence in dimension > k, the set $$\Large(\bigcup^{t}_{i=0}Att_R(0:_A(x_1^{n_1},{\ldots},x_i^{n_i})))_{{\geq}k}$$ is independent of the choice of $n_1,{\ldots},n_t$. Let r be the eventual value of $Width_{>k}(0:_AJ^n)$. Then our second result says that for each $t{\leq}r$ the set $\large(\bigcup\limits_{i=0}^{t}Att_R(Tor_i^R(R/I,\;(0:_AJ^n))))_{{\geq}k}$ is stable for large n.

AN INDEPENDENT RESULT FOR ATTACHED PRIMES OF CERTAIN TOR-MODULES

  • Khanh, Pham Huu
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.531-540
    • /
    • 2015
  • Let (R, m) be a Noetherian local ring, I an ideal of R, and A an Artinian R-module. Let $k{\geq}0$ be an integer and $r=Width_{>k}(I,A)$ the supremum of length of A-cosequence in dimension > k in I defined by Nhan-Hoang [8]. It is shown that for all $t{\leq}r$ the sets $$(\bigcup_{i=0}^{t}Att_R(Tor_i^R(R/I^n,A)))_{{\geq}k}\;and\\(\bigcup_{i=0}^{t}Att_R(Tor_i^R(R/(a_1^{n_1},{\cdots},a_l^{n_l}),A)))_{{\geq}k}$$ are independent of the choice of $n,n_1,{\cdots},n_l$ for any system of generators ($a_1,{\cdots},a_l$) of I.