• 제목/요약/키워드: asymmetrical degradation

검색결과 6건 처리시간 0.02초

Experimental Investigation of Physical Mechanism for Asymmetrical Degradation in Amorphous InGaZnO Thin-film Transistors under Simultaneous Gate and Drain Bias Stresses

  • Jeong, Chan-Yong;Kim, Hee-Joong;Lee, Jeong-Hwan;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.239-244
    • /
    • 2017
  • We experimentally investigate the physical mechanism for asymmetrical degradation in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses. The transfer curves exhibit an asymmetrical negative shift after the application of gate-to-source ($V_{GS}$) and drain-to-source ($V_{DS}$) bias stresses of ($V_{GS}=24V$, $V_{DS}=15.9V$) and ($V_{GS}=22V$, $V_{DS}=20V$), but the asymmetrical degradation is more significant after the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20 V) nevertheless the vertical electric field at the source is higher under the bias stress ($V_{GS}$, $V_{DS}$) of (24 V, 15.9 V) than (22 V, 20 V). By using the modified external load resistance method, we extract the source contact resistance ($R_S$) and the voltage drop at $R_S$ ($V_{S,\;drop}$) in the fabricated a-IGZO TFT under both bias stresses. A significantly higher RS and $V_{S,\;drop}$ are extracted under the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20V) than (24 V, 15.9 V), which implies that the high horizontal electric field across the source contact due to the large voltage drop at the reverse biased Schottky junction is the dominant physical mechanism causing the asymmetrical degradation of a-IGZO TFTs under simultaneous gate and drain bias stresses.

비대칭 소오스/드레인을 갖는 NMOSFET의 전기적 특성 (Electrical Characteristics of NMOSFET's with Asymmetric Source/Drain Region)

  • 공동욱;이재성이용현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.533-536
    • /
    • 1998
  • The electrical characteristics of NMOSFETs with asymmetrical source/drain regions have been expermentally investigated using test devices fabricated by $0.35\mu\textrm{m}$ CMOS technology. The performance degradation for asymmetric transistor and its causes are analyzed. The parasitic resistances, such as series resistance of active regions and silicide junction contact resistance, are distributed in parallel along the channel. Depending on source/drain geometry, the array of those resistances is changed, that results the various electrical properties.

  • PDF

Experimental investigation of SRHSC columns under biaxial loading

  • Wang, Peng;Shi, Qing X.;Wang, Feng;Wang, Qiu W.
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.485-496
    • /
    • 2017
  • The behavior of 8 steel reinforced high-strength concrete (SRHSC) columns, which comprised of four identical columns with cross-shaped steel and other four identical columns with square steel tube, was investigated experimentally under cyclic uniaxial and biaxial loading independently. The influence of steel configuration and loading path on the global behavior of SRHSC columns in terms of failure process, hysteretic characteristics, stiffness degradation and ductility were investigated and discussed, as well as stress level of the longitudinal and transverse reinforcing bars and steel. The research results indicate that with a same steel ratio deformation capacity of steel reinforced concrete columns with a square steel tube is better than the one with a cross-shaped steel. Loading path affects hysteretic characteristics of the specimens significantly. Under asymmetrical loading path, hysteretic characteristics of the specimens are also asymmetry. Compared with specimens under unidirectional loading, specimens subjected to bidirectional loading have poor carrying capacity, fast stiffness degradation, small yielding displacement, poor ductility and small ultimate failure drift. It also demonstrates that loading paths affect the deformation capacity or deformation performance significantly. Longitudinal reinforcement yielding occurs before the peak load is attained, while steel yielding occurs at the peak load. During later displacement loading, strain of longitudinal and transverse reinforcing bars and steel of specimens under biaxial loading increased faster than those of specimens subjected to unidirectional loading. Therefore, the bidirectional loading path has great influence on the seismic performance such as carrying capacity and deformation performance, which should be paid more attentions in structure design.

Design and Implementation of a Single Input Fuzzy Logic Controller for Boost Converters

  • Salam, Zainal;Taeed, Fazel;Ayob, Shahrin Md.
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.542-550
    • /
    • 2011
  • This paper describes the design and hardware implementation of a Single Input Fuzzy Logic Controller (SIFLC) to regulate the output voltage of a boost power converter. The proposed controller is derived from the signed distance method, which reduces a multi-input conventional Fuzzy Logic Controller (CFLC) to a single input FLC. This allows the rule table to be approximated to a one-dimensional piecewise linear control surface. A MATLAB simulation demonstrated that the performance of a boost converter is identical when subjected to the SIFLC or a CFLC. However, the SIFLC requires nearly an order of magnitude less time to execute its algorithm. Therefore the former can replace the latter with no significant degradation in performance. To validate the feasibility of the SIFLC, a 50W boost converter prototype is built. The SIFLC algorithm is implemented using an Altera FPGA. It was found that the SIFLC with asymmetrical membership functions exhibits an excellent response to load and input reference changes.

예측 제어기를 이용한 2바퀴 로봇의 실시간 균형제어 (Real Time Balancing Control of 2 Wheel Robot Using a Predictive Controller)

  • 강진구
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.11-16
    • /
    • 2014
  • 본 논문은 예측제어기를 이용하여 2휠 로봇의 실시간 균형을 유지할 수 있는 자세 제어에 대해 연구하였다. 또한 역방향 진자 제어는 로봇이 진행하는 동안 균형을 유지하기 위하여 도입되었다. 본 논문에서 구현에 사용한 프로세서는 dsPIC30F4013 임베디드 프로세서이며 자체 균형 알고리즘을 설계하고 구현 하는 것이다. 본 연구에서 ARS는 2축의 자이로 각(roll, pitch)과 3축의 가속도계 값(x, y, z)값으로 자세를 계산하도록 하였다. 따라서 본 연구에서는 외란에 대한 자세의 불균형을 극복하기 위한 예측제어기를 제안했으며 이를 원격 시스템의 제어문제에 도입하여 2바퀴 로봇의 선형 제어기와 예측제어기를 결합한 시스템의 시뮬레이션을 수행하였다. 또한 강인한 특성을 실현하기 위해 목표 필터루프를 설계하고 강인도-안정성을 만족하는 제어기를 설계하므로 제어시스템의 안정성을 향상시키고 시스템의 성능의 저하를 최소화함을 확인하였다.

The Effect of Seat Incline Angle in Hemiplegic Patients' Standing up Training

  • Sim, Woo Sang;Jung, Kwang Tae;Won, Byeong Hee
    • 대한인간공학회지
    • /
    • 제35권6호
    • /
    • pp.493-501
    • /
    • 2016
  • Objective: This study analyzes the effect of angle conditions of rehabilitation equipment used for supporting hemiplegic patients on their rehabilitation training for standing action. The study was performed by adjusting the rear angle of seat inclination through a motion analysis. Background: Owing to a loss of muscle rigidity and degradation of muscle control ability, hemiplegic stroke patients suffer from asymmetrical posture, abnormal body balance, and degraded balance abilities due to poor weight-shifting capacity. The ability to shift and maintain one's weight is extremely essential for mobility, which plays an important role in our daily life. Thus, to improve patients' ability to maintain weight evenly and move normally, they need to undergo orthostatic and ambulatory training. Method: Using a motion analysis system, knee movements on both hemiplegic side and non-hemiplegic side were measured and analyzed in five angles ($0^{\circ}$, $10^{\circ}$, $30^{\circ}$, $50^{\circ}$, $70^{\circ}$) while supported by the sit-to-stand rehabilitation equipment. Results: The knee movements on both sides increased as the angle increased in angle support interval to support a hemiplegic patient's standing up position. In standing up interval, a hemiplegic patient's knee movement deviations on both sides decreased, and the movement differences between hemiplegic and non-hemiplegic legs also decreased as the angle increased. Conclusion: The results of this study showed that the rehabilitation effectiveness increases as the angle increases, leading to a balanced standing posture through the decrease of movement difference between hemiplegic and non-hemiplegic sides and an improved standing up ability through the increase of knee movement on both sides. However, angles higher than $50^{\circ}$ didn't provide a significant effect. Therefore, a support angle under $50^{\circ}$ was proposed in this study. Application: The results of this study are expected to be applicable to the design of sit-to-stand support equipment to improve the effectiveness of the rehabilitation process of hemiplegic patients.