• 제목/요약/키워드: asymmetric stiffness matrix

검색결과 7건 처리시간 0.019초

A simple method of stiffness matrix formulation based on single element test

  • Mau, S.T.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.203-216
    • /
    • 1999
  • A previously proposed finite element formulation method is refined and modified to generate a new type of elements. The method is based on selecting a set of general solution modes for element formulation. The constant strain modes and higher order modes are selected and the formulation method is designed to ensure that the element will pass the basic single element test, which in turn ensures the passage of the basic patch test. If the element is to pass the higher order patch test also, the element stiffness matrix is in general asymmetric. The element stiffness matrix depends only on a nodal displacement matrix and a nodal force matrix. A symmetric stiffness matrix can be obtained by either modifying the nodal displacement matrix or the nodal force matrix. It is shown that both modifications lead to the same new element, which is demonstrated through numerical examples to be more robust than an assumed stress hybrid element in plane stress application. The method of formulation can also be used to arrive at the conforming displacement and hybrid stress formulations. The convergence of the latter two is explained from the point of view of the proposed method.

Free vibration analysis of asymmetric shear wall-frame buildings using modified finite element-transfer matrix method

  • Bozdogan, Kanat B.
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.1-17
    • /
    • 2013
  • In this study, the modified finite element- transfer matrix methods are proposed for free vibration analysis of asymmetric structures, the bearing system of which consists of shear wall-frames. In the study, a multi-storey structure is divided into as many elements as the number of storeys and storey masses are influenced as separated at alignments of storeys. The shear walls and frames are assumed to be flexural and shear cantilever beam structures. The storey stiffness matrix is obtained by formulating the governing equation at the center of mass for the shear walls and the frames in the i.th floor. The system transfer matrix is constructed in the dimension of $6{\times}6$ by transforming the obtained stiffness matrix. Thus, the dimension, which is $12n{\times}12n$ in classical finite elements, is reduced to the dimension of $6{\times}6$. To study the suitability of the method, the results are assessed by solving two examples taken from the literature.

Exact dynamic stiffness matrix for a thin-walled beam-column of doubly asymmetric cross-section

  • Shirmohammadzade, A.;Rafezy, B.;Howson, W.P.
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.195-210
    • /
    • 2011
  • Bernoulli-Euler beam theory is used to develop an exact dynamic stiffness matrix for the flexural-torsional coupled motion of a three-dimensional, axially loaded, thin-walled beam of doubly asymmetric cross-section. This is achieved through solution of the differential equations governing the motion of the beam including warping stiffness. The uniform distribution of mass in the member is also accounted for exactly, thus necessitating the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, examples are given to confirm the accuracy of the theory presented, together with an assessment of the effects of axial load and loading eccentricity.

On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method

  • Ghandi, Elham;Shiri, Babak
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.759-769
    • /
    • 2017
  • The effect of central axial load on natural frequencies of various thin-walled beams, are investigated by some researchers using different methods such as finite element, transfer matrix and dynamic stiffness matrix methods. However, there are situations that the load will be off centre. This type of loading is called eccentric load. The effect of the eccentricity of axial load on the natural frequencies of asymmetric thin-walled beams is a subject that has not been investigated so far. In this paper, the mentioned effect is studied using exact dynamic stiffness matrix method. Flexure and torsion of the aforesaid thin-walled beam is based on the Bernoulli-Euler and Vlasov theories, respectively. Therefore, the intended thin-walled beam has flexural rigidity, saint-venant torsional rigidity and warping rigidity. In this paper, the Hamilton‟s principle is used for deriving governing partial differential equations of motion and force boundary conditions. Throughout the process, the uniform distribution of mass in the member is accounted for exactly and thus necessitates the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, in order to verify the accuracy of the presented theory, the numerical solutions are given and compared with the results that are available in the literature and finite element solutions using ABAQUS software.

Preliminary Structural Design of Wall-Frame Systems for Optimum Torsional Response

  • Georgoussis, George K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.45-58
    • /
    • 2017
  • Recent investigations have pointed out that current code provisions specifying that the stiffness of reinforced concrete elements is strength independent, and therefore can be estimated prior to any strength assignment, is incorrect. A strength allocation strategy, suitable for preliminary structural design of medium height wall-frame dual systems, is presented for allocating strength in such buildings and estimating the dependable rigidities. The design process may be implemented by either the approximate continuous approach or the stiffness matrix method. It is based on the concept of the inelastic equivalent single-degree-of-freedom system which, the last few years, has been used to implement the performance based seismic design. The aforesaid strategy may also be used to determine structural configurations of minimum rotation distortion. It is shown that when the location of the modal centre of rigidity, as described in author's recent papers, is within a close distance from the mass axis the torsional response is mitigated. The methodology is illustrated in ten story building configurations, whose torsional response is examined under the ground motion of Kobe 1995, component KJM000.

강소성 유한요소법에서의 다결정 모델의 구현 (Implementation of Polycrystal Model in Rigid Plastic Finite Element Method)

  • 강경필;이경훈;김용환;신광선
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.286-292
    • /
    • 2017
  • Magnesium alloy shows strong anisotropy and asymmetric behavior in tension and compression curve, especially at room temperature. These characteristics limit the application of finite element method (FEM) which is based on conventional continuum mechanics. To accurately predict the material behavior of magnesium alloy at microstructural level, a methodology of fully coupled multiscale simulation is presented and a crystal plasticity model as a constitutive equation in the simulation of metal forming process is introduced in this study. The existing constitutive equation for rigid plastic FEM is modified to accommodate deviatoric stress component and its derivatives with respect to strain rate components. Viscoplastic self-consistent (VPSC) polycrystal model was selected as a constitutive model because it was regarded as the most robust model compared to Taylor model or Sachs model. Stiffness matrix and load vector were derived based on the new approach and implemented into $DEFORM^{TM}-3D$ via a user subroutine handling stiffness matrix at an elemental level. The application to extrusion and rolling process of pure magnesium is presented in this study to assess the validity of the proposed multiscale process.

다수 케이블요소를 사용한 사장교의 횡방향진동을 포함한 비선형 해석 (A Nonlinear Analysis of Cable Stayed Bridge including Sway Vibrational Effects using Multiple Cable Elements)

  • 성익현;윤기용
    • 한국강구조학회 논문집
    • /
    • 제12권6호
    • /
    • pp.661-670
    • /
    • 2000
  • 다양한 이동하중을 받는 3차원 사장교에서 동적응답을 구하고자 동일 제원을 갖는 사장교 해석모델에 대하여 두 가지 케이블요소를 적용하여 케이블의 면외 진동영향을 포함한 경우를 알아보고자 하였다. 특히 사장교와 같은 전 구조체계가 유연성을 갖는 구조에서는 사용하중하에서도 동적응답이 민감할 것으로 가정하고 주탑, 바닥판을 연결하는 케이블의 유연성을 포함하여 거동을 파악하고자 하였다. 또한 진동해석시 정적비선형해석을 통한 기하강도행렬과 접선강도행렬을 연계하여 수행하였으며 특히 케이블을 다수의 요소로 분할한 경우에서 단일 케이블요소로 고려되는 축방향진동 이외의 다양한 진동모우드를 나타내고 이러한 면내, 면외진동의 영향이 주탑 및 바닥판과의 상호 연성관계를 통한 추가적인 거동을 유발함을 알 수 있었다. 또한 케이블의 진동영향을 고려한 경우 비대칭 편도의 이동하중을 적용하여 바닥판의 회전각을 비교할 경우에도 케이블의 횡진동의 영향이 전체구조의 추가적인 동적응답을 나타냄을 볼 수 있었다.

  • PDF