• Title/Summary/Keyword: asymmetric slit

Search Result 6, Processing Time 0.025 seconds

Optimal seismic retrofit design method for asymmetric soft first-story structures

  • Dereje, Assefa Jonathan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.677-689
    • /
    • 2022
  • Generally, the goal of seismic retrofit design of an existing structure using energy dissipation devices is to determine the optimum design parameters of a retrofit device to satisfy a specified limit state with minimum cost. However, the presence of multiple parameters to be optimized and the computational complexity of performing non-linear analysis make it difficult to find the optimal design parameters in the realistic 3D structure. In this study, genetic algorithm-based optimal seismic retrofit methods for determining the required number, yield strength, and location of steel slit dampers are proposed to retrofit an asymmetric soft first-story structure. These methods use a multi-objective and single-objective evolutionary algorithms, each of which varies in computational complexity and incorporates nonlinear time-history analysis to determine seismic performance. Pareto-optimal solutions of the multi-objective optimization are found using a non-dominated sorting genetic algorithm (NSGA-II). It is demonstrated that the developed multi-objective optimization methods can determine the optimum number, yield strength, and location of dampers that satisfy the given limit state of a three-dimensional asymmetric soft first-story structure. It is also shown that the single-objective distribution method based on minimizing plan-wise stiffness eccentricity turns out to produce similar number of dampers in optimum locations without time consuming nonlinear dynamic analysis.

Software of Slit-Viewing Camera Module for IGRINS (Immersion GRating INfrared Spectrograph)

  • Lee, Hye-In;Pak, Soojong;Lee, Jae-Joon;Mace, Gregory;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.1-66.1
    • /
    • 2016
  • We developed an observation control software for the IGRINS (Immersion Grating Infrared Spectrograph) silt-viewing camera module, which points the astronomical target onto the spectroscopy slit and sends tracking feedbacks to the telescope control system. The point spread function (PSF) is not always symmetric. In addition, bright targets are easily saturated and shown as a donut shape. It is not trivial to define and find the center of the asymmetric PSF especially on a slit mask. We made a center balancing algorithm (CBA) following the concept of median. The CBA derives the expected center position along the slit-width axis by referencing the stray flux ratios of both upper and lower sides of the slit. We compared efficiencies of the CBA and those of a two-dimensional Gaussian fitting (2DGA) through simulations from observation images in order to evaluate the center finding algorithms. Both of the algorithms are now applied in observation and users can select the algorithm.

  • PDF

Broadband planar dipole with a t-shaped slit for digital TV Reception (t형 슬릿을 갖는 디지털 TV 수신용 광대역 평면 다이폴)

  • Lee, Jong-Ig;Yeo, Junho;Yang, Myung-Ku;Lee, Yoon-Ju;Kwon, Jun-Hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.159-160
    • /
    • 2014
  • In this paper, a design method for a broadband planar dipole antenna for the terrestrial digital television (DTV) reception is studied. The proposed antenna is an asymmetrical planar dipole consists of a rectangular patch with an embedded t-shaped slit, and the antenna shape is printed on a side of an FR4 substrate. The effects of geometrical parameters on the antenna performance are examined, and the parameters are adjusted to operate in the DTV frequency band of 470-806 MHz. The prototype antenna is fabricated on an FR4 substrate with a size of $260mm{\times}30mm$. The performance of the antenna is tested experimentally to verify the results of this study.

  • PDF

Theoretical Analysis on the Velocity Profile of Newtonian Fluids within Modelled Asymmetric Membrane Pores (모델화한 비대칭형 막기공에서 뉴톤 유체의 속도분포에 관한 이론해석)

  • 전명석;김재진
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.142-149
    • /
    • 1997
  • The extended analysis on the diverging flow through asymmetric membrane pores has been performed in this study. Afore rigorous equations of velocity profile relevant to the divergent slit and cone shaped channels, which are widely used as a general pore model, have been obtained by employing a creeping flow approach of Newtonian fluids. As a degree of asymmetry (i.e., diverging angle) is increased, the predicted flow function shifts Toward the center region due to the incorporated wall effect, so that the overall velocity profile becomes decreased. It is true, as expected, that when the divergent channel is in the low diverging angle limit, the channel flow results in the Poiseuillean fashion by utilizing a lubrication approximation. The flow rate equation of each type of channel has been developed from the combined solution of velocity profile and pressure fields. The effect of diverging flow on the flow rate enhancement has been remarkably predicted, in which the flow rate increases with the increase of pore asymmetry. The advantage of our theoretical results lies in the analytical expression for the diverging flow behavior through pore channels as well as its ability to play a fundamental role on the related membrane filtrations such as microfiltration and ultrafiltration.

  • PDF

A compact Monopole Antenna Design for WLAN/WiMAX Triple Band Operations (WLAN/WiMAX 삼중대역에서 동작하는 모노폴 안테나의 설계)

  • Yoon, Joong-Han;Jang, Yeon-Gil;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.465-473
    • /
    • 2012
  • In this study, a novel dual band planar monopole antenna for wireless local area network (WLAN)/ Worldwide Interoperability of Microwave Access (WiMAX) application was designed, fabricated, and measured. The proposed antenna consists of two hook shaped strips, an asymmetric ground plane, and a rectangular slit in the ground plane. Acceptable agreements between the measured and simulated results are achieved. Numerical and experimental results demonstrate that the proposed antenna satisfies the 10 dB impedance bandwidth requirement while covering the WLAN and WiMAX bands simultaneously. This paper also presents and discusses the 2D radiation patterns and 3D gains according to the results of the experiment that was conducted.

Ku-Band 50-W GaN HEMT Internally-Matched Power Amplifier (Ku-대역 50 W급 GaN HEMT 내부 정합 전력증폭기)

  • Kim, Seil;Lee, Min-Pyo;Hong, Sung-June;Lim, Jun-Su;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.8-11
    • /
    • 2019
  • In this paper, a Ku-band 50-W internally-matched power amplifier is designed and fabricated using a CGHV1J070D GaN HEMT from Wolfspeed. To obtain the same magnitudes and phases for the output signals of the unit transistor cells, which constitute a power transistor, a slit pattern and an asymmetric T-junction are used in the input and output matching circuits. The internally-matched power amplifier is fabricated on two different thin-film substrates with relative dielectric constants of 40 and 9.8, respectively, and is measured under pulsed conditions with a pulse period of $330{\mu}s$ and a duty cycle of 6%. The measured results show a maximum output power of 50~73 W, a drain efficiency of 35.4~46.4%, and a power gain of 4.5~6.5 dB from 16.2 to 16.8 GHz.