• 제목/요약/키워드: asymmetric distance matrix

검색결과 5건 처리시간 0.017초

Multidimensional Scaling of Asymmetric Distance Matrices

  • Huh, Myung-Hoe;Lee, Yong-Goo
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.613-620
    • /
    • 2012
  • In most cases of multidimensional scaling(MDS), the distances or dissimilarities among units are assumed to be symmetric. Thus, it is not an easy task to deal with asymmetric distances. Asymmetric MDS developed so far face difficulties in the interpretation of results. This study proposes a much simpler asymmetric MDS, that utilizes the notion of "altitude". The analogy arises in mountaineering: It is easier (more difficult) to move from the higher (lower) point to the lower (higher). The idea is formulated as a quantification problem, in which the disparity of distances is maximally related to the altitude difference. The proposed method is demonstrated in three examples, in which the altitudes are visualized by rainbow colors to ease the interpretability of users.

On the Geometric Equivalence of Asymmetric Factorial Designs

  • Park, Dong-Kwon;Park, Eun-Hye
    • Communications for Statistical Applications and Methods
    • /
    • 제13권3호
    • /
    • pp.777-786
    • /
    • 2006
  • Two factorial designs with quantitative factors are called geometrically equivalent if the design matrix of one can be transformed into the design matrix of the other by row and column permutations, and reversal of symbol order in one or more columns. Clark and Dean (2001) gave a sufficient and necessary condition (which we call the 'gCD condition') for two symmetric factorial designs with quantitative factors to be geometrically equivalent. This condition is based on the absolute value of the Euclidean(or Hamming) distance between pairs of design points. In this paper we extend the gCD condition to asymmetric designs. In addition, a modified algorithm is applied for checking the equivalence of two designs.

릴레이 코일을 포함한 자기 공명 방식 무선 전력 전송 시스템의 분석 및 모델링 (Analysis and Modeling of Wireless Power Transfer Systems using Magnetically Coupled Resonator Scheme with Relay Coils)

  • 박희수;권민성;김민지;박현민;구현철
    • 조명전기설비학회논문지
    • /
    • 제28권1호
    • /
    • pp.69-78
    • /
    • 2014
  • In this paper, characteristics of wireless power transfer (WPT) systems using magnetically coupled resonance scheme with relay coils are investigated and modeled. Especially, asymmetric frequency splitting characteristics in over-coupled region of WPT with relays are measured and accurately modeled. Transmitter, receiver, and relay coils are modeled with R, L, C equivalent circuits. Using these circuit models and mutual inductances between coils, a WPT system is described with a linear matrix equation. For under-coupled region, a matrix is simplified considering only mutual inductances between adjacent coils. An analytical transfer characteristic of WPT system vs. distance is extracted using an inverse matrix that is acquired by Gauss elimination method for the simplified matrix. For over-coupled region, a matrix considering mutual inductances between non-adjacent coils is used to predict a frequency splitting characteristics accurately. A 6.3MHz WPT system with relay coils is implemented and measured. An accuracy of the model is investigated by comparing the output of the model with the measured results.

Preliminary Structural Design of Wall-Frame Systems for Optimum Torsional Response

  • Georgoussis, George K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.45-58
    • /
    • 2017
  • Recent investigations have pointed out that current code provisions specifying that the stiffness of reinforced concrete elements is strength independent, and therefore can be estimated prior to any strength assignment, is incorrect. A strength allocation strategy, suitable for preliminary structural design of medium height wall-frame dual systems, is presented for allocating strength in such buildings and estimating the dependable rigidities. The design process may be implemented by either the approximate continuous approach or the stiffness matrix method. It is based on the concept of the inelastic equivalent single-degree-of-freedom system which, the last few years, has been used to implement the performance based seismic design. The aforesaid strategy may also be used to determine structural configurations of minimum rotation distortion. It is shown that when the location of the modal centre of rigidity, as described in author's recent papers, is within a close distance from the mass axis the torsional response is mitigated. The methodology is illustrated in ten story building configurations, whose torsional response is examined under the ground motion of Kobe 1995, component KJM000.

Interdiffusion at Interfaces of Polymers with Dissimilar Physical Properties

  • 정재명;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권7호
    • /
    • pp.720-729
    • /
    • 1997
  • The interface between two different polymers is characterized theoretically by using a model. This model is based on the assumption that the monomeric friction coefficients of the two polymers are identical but a strong function of the matrix composition. This model predicts that the concentration profiles are highly asymmetric with substantial swelling of the slower-diffusing component by the faster component. To predict the behavior of interdiffusion, three quantities are used: distance of interface Z*(t) due to the swelling, interfacial width W(t) which is most sensitive to the detailed composition profiling, and mass transport M(t) due to interdiffusion. It is found that the more dissimilar polymer pairs, the faster the movement of the interface, the quicker its interfacial width saturates to a limiting value and the slower its mass transport. These results are in qualitative agreement with some experiments.